
Operations Research Letters 45 (2017) 652–658

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Generation of feasible integer solutions on a massively parallel
computer using the feasibility pump
Utku Koc a,b,*, Sanjay Mehrotra a

a Northwestern University, Evanston, IL, USA
b MEF University, Istanbul, Turkey

a r t i c l e i n f o

Article history:
Received 19 July 2016
Received in revised form 3 October 2017
Accepted 3 October 2017
Available online 19 October 2017

Keywords:
Mixed integer programming
Parallel optimization
Feasibility pump

a b s t r a c t

We present an approach to parallelize generation of feasible mixed integer solutions of mixed integer
linear programs in distributed memory high performance computing environments. This approach
combines a parallel framework with feasibility pump (FP) as the rounding heuristic. It runs multiple FP
instances with different starting solutions concurrently, while allowing them to share information. Our
computational results suggest that the improvement resulting from parallelization using our approach is
statistically significant.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this studywe consider the problemof generating high quality
feasible solutions for unstructured Mixed Integer Linear Programs
(MILPs) in a parallel computational environment. We refer the
interested reader to Lodi [18] for a recent review ofMILP literature.
Generating high quality feasible solutions quickly is important in
practice. Additionally, availability of feasible solutions with close
to optimal objective value, may help reduce the number of nodes
in the branch and bound (B&B) tree in a branch and cut algorithm.
We propose a scheme that can usemultiple heuristics with various
parameter settings in parallel. Specifically, we empirically investi-
gate the use of Feasibility Pump (FP) to find feasible solutions for
unstructured MILPs in a parallel framework.

The motivation of this study is the emerging computing en-
vironment. The clock speed of the high-tech processors is more
or less stable for the past few years. Computer technology is
now mainly focused on increasing the number of processors and
memory. With this in mind, we move to a new era of developing
parallel algorithms for a variety of problems for desktop and high
performance computing (HPC). From a practical point of view, it
is important to solve a problem or identify a good solution within
a reasonable amount of wall-clock time, de-emphasizing the CPU-
time used.

For MILPs, a way to use the power of parallel computing is
to search the branch and bound tree in parallel. Koch et al. [17]

* Corresponding author at: MEF University, Istanbul, Turkey.
E-mail addresses: utku.koc@mef.edu.tr (U. Koc), mehrotra@northwestern.edu

(S. Mehrotra).

discuss that the speed up of a B&B algorithm is around 20,000
compared to a sequential run, even if a million cores are used to
search the B&B tree. They discuss that the dis-proportionality in
the performance is mainly due to the communication overhead,
performance effect of the redundant work, and idle time due to
latency/contention/starvation.

The FP algorithm is a constructive heuristic forMILPs that starts
from a feasible solution x of the continuous relaxation, searches
for another solution x̂ that is as close as possible to a rounded
solution of x (which is infeasible but integral) by solving an ℓ1 norm
minimization problem. The algorithm continues until a feasible
integral solution is found. The FP heuristic was first proposed
by Fischetti et al. [10] for 0–1 MILPs. An extension to general
MILPs is proposed by Bertacco et al. [7]. By a modification of
the objective function, Achterberg and Berthold [1] found better
feasible solutions (Objective FP). Fischetti and Salvagnin proposed
a different rounding heuristic by using constraint propagation
techniques after rounding some of the variables [13]. Baena and
Castro [3] extended the FP, so that the integer point is obtained
by rounding a point on the (feasible) line segment between the
computed feasible point and the analytic center for the relaxed
LP. Huang and Mehrotra studied a combination of different types
of random walks and FP in which the FP algorithm is used as the
rounding procedure for interior random points. They generate fea-
sible solutions for MILPs [14] and Mixed Integer Convex Programs
(MICPs) [15]. Fischetti et al. studied to increase the stability of
the root node LP solutions through parallel independent runs with
diverse initial conditions [12]. Munguia et al. [19] combine the use
of parallelization and simple large neighborhood search schemes
to generate feasible solutions for MILPs.

https://doi.org/10.1016/j.orl.2017.10.003
0167-6377/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.orl.2017.10.003
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2017.10.003&domain=pdf
mailto:utku.koc@mef.edu.tr
mailto:mehrotra@northwestern.edu
https://doi.org/10.1016/j.orl.2017.10.003


U. Koc, S. Mehrotra / Operations Research Letters 45 (2017) 652–658 653

There are several other heuristics for finding feasible solutions
for MILP problems that can be used as a part of a parallel imple-
mentation. Among them, Pivot-and-Complement [5,6] performs
simplex like pivots to get slack variable into the basis and integer
variables out of a basis. Another heuristic for 0–1 MILP is OCTANE,
which uses enumeration techniques on extended facets of the
octahedron [4]. Fischetti and Lodi propose a local search algo-
rithm [11] to improve an incumbent solution. Relaxation Induced
Neighborhood Search (RINS) heuristic solves sufficiently smaller
sub-MILPs to improve an incumbent solution [9], and the use of
random-walks was investigated in [14,15].

In this study,weprovide a parallel framework inwhichmultiple
feasibility heuristics starting from different solutions can commu-
nicate and share information.We assess the value of parallelization
independent of the increase in the CPU-time and provide a parallel
framework that can use multiple parameters for feasibility heuris-
tics. Each parallel subroutine uses a different rounding scheme so
that the most fractional variables are rounded in an enumerative
fashion independently. This study is the first of its kind in terms of
using many cores to generate feasible integer solutions in parallel
in a distributed memory environment with many cores.

The rest of the paper is organized as follows: we describe our
parallel heuristic framework in Section 2. Details of the rounding
procedure are given in Section 3. Section 4 gives the implementa-
tion details of the proposed algorithms. The computational results
are given in Section 5. We show that the proposed approach is
effective up to 128 cores in today’s HPC environment. Finally, we
conclude in Section 6.

2. A concurrent framework for finding feasible solutions for
MILPs

In our approach, we run multiple feasibility heuristics in par-
allel. We refer to the algorithms running in different processors
as subroutines. Each parallel subroutine uses a different random
number seed with different starting solutions. One may also run
different feasibility heuristics in parallel. Moreover, any combi-
nation of parameter settings, rounding methods, and anti-cycling
rules are also valid. Note that, even if all the subroutines start from
the same solution and run independently, final integer solutions
may still be different. This is because multiple instances can take
different paths in the course of the parallel subroutines. Whenever
one of the subroutines finds a feasible solution, it broadcasts the
objective function value to others via the master. Then, all subrou-
tines continue their search with a new and better objective cut-off
constraint. Thus, the information gained in one of the subroutines
is sharedwith the rest to enhance their search. This is an important
feature of our concurrent optimization approach. All subroutines
update themselves as soon as the first feasible solution is found.
In this study, as a proof of concept, we use FP as the rounding
procedure of the subroutines of our concurrent feasibility heuristic.

Regarding the communication during the run time, onemay use
the so called master/slave topology. In this paradigm, the master
controls the overall course of the algorithm. Slave programs, on
the other hand, follow the commands from the master, run the
instances of the heuristic, and return integer solution(s) to the
master, if any. The role of the master is distributing inputs to and
collecting results from the slaves. The main algorithm that runs at
the master is presented in Algorithm 2.1.

We illustrate the algorithm running at the slaves in Algorithm
2.2. Each slave uses a different random number seed and may run
a different variant of a heuristic. At each iteration of Algorithm 2.2 ,
the slave subroutine receives relevant information from themaster
(if any), updates itself with the new information, creates a starting
solution for the algorithms depending on the type of heuristic it
is running and sends the integer solutions to the master, if any.

Algorithm 2.1 Parallel Feasibility-Pump Running in Master
Input: a MILP min{cT x : Ax ≥ b, x ∈ Rn, xj integer ∀j ∈ I}, number

of slaves each heuristic will run
Output: an integer solution to the above MILP
1: Spawn Slaves
2: Set LB = min{cT x : Ax ≥ b, x ∈ Rn

} and UB = ∞

3: Inform slaves about heuristic to run and LB
4: while termination criteria not met do
5: Collect results
6: if One of the slaves returns an integer solution then
7: Update UB = minimum of the slaves
8: Inform slaves about the new UB
9: end if

10: end while
11: Exit all the slaves and return best integer so far

Algorithm 2.2 Parallel Heuristic Subroutine Running in Slaves
Input: a MILP, UB
Output: an integer solution to the MILP
1: Receive the type of the heuristic to run and LB form the Master
2: while not exited by the master do
3: Listen to the master for information (UB)
4: Update RHS of the objective cut-off constraint
5: Update with respect to the heuristic variant
6: Create a starting solution x
7: Run heuristic starting from x
8: Broadcast best integer solution
9: end while

Theheuristic subroutine continues until predetermined criteria are
met, or the master provides new information.

The variants of the heuristic subroutines differ in Steps 5–7
of Algorithm 2.2. The update procedure, generations of starting
solutions, and running conditions of the heuristics depend on the
heuristic itself and information provided by the master.

3. Variants of FP heuristic

In this section we describe the details of the rounding subrou-
tine, aswell as the generation of the starting solutions for rounding.
We start with the details of the basic FP algorithm as the rounding
procedure.

3.1. Basic and objective FP algorithms

The FP algorithm starts from a solution x, searches for another
solution x̂ that is as close as possible to a rounded solution of x (x̃)
by solving an ℓ1 norm minimization problem of the form:

min

⎧⎨⎩∆(x, x̃) =

∑
j∈I

|xj − x̃j| : Ax ≥ b, cT x ≤ RHS, x ∈ Rn

⎫⎬⎭
where ∆(x, x̃) is the ℓ1 norm distance, Ax ≥ b is the constraint
set defined by the original MILP and cT x ≤ RHS is the objective
cut-off constraint. For problems with general integer variables, ∆
is defined by adding artificial variables. At each attempt to solve
the problem, ℓ1 norm distance function ∆ is updated with respect
to the rounded solution x̃. In this heuristic, one needs to decide
on how the starting solutions (xk) and rounding procedure (x̃) are
defined at each iteration k.

Using a normalized convex combination of the original objec-
tive function and the above ℓ1 norm objective, one can generate
better quality solutions (Objective-FP) [1]. The idea is to focusmore



Download English Version:

https://daneshyari.com/en/article/7543957

Download Persian Version:

https://daneshyari.com/article/7543957

Daneshyari.com

https://daneshyari.com/en/article/7543957
https://daneshyari.com/article/7543957
https://daneshyari.com

