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a b s t r a c t

We consider the problem of minimizing a convex function over a subset of Rn that is not necessarily
convex (minimization of a convex function over the integer points in a polytope is a special case). We
define a family of duals for this problem and show that, under some natural conditions, strong duality
holds for a dual problem in this family that is more restrictive than previously considered duals.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Insights obtained through duality theory have spawned ef-
ficient optimization algorithms (combinatorial and numerical)
which simultaneously work on a pair of primal and dual prob-
lems. Striking examples are Edmonds’ seminal work in combina-
torial optimization, and interior-point algorithms for numerical/
continuous optimization.

Compared to duality theory for continuous optimization, du-
ality theory for mixed-integer optimization is still underdevel-
oped. Although the linear case has been extensively studied, see,
e.g., [4,5,13,14], nonlinear integer optimization duality was essen-
tially unexplored until recently. An important step was taken by
Morán et al. for conic mixed-integer problems [12], followed up by
Baes et al. [2] who presented a duality theory for general convex
mixed-integer problems. The approach taken by Moran et al. was
essentially algebraic, drawing on the theory of subadditive func-
tions. Baes et al. took amore geometric viewpoint and developed a
duality theory based on lattice-free polyhedra.We follow the latter
approach.

Given S ⊆ Rn and a convex function f : Rn
→ R, we consider

the problem

inf
s∈S

f (s). (1)

In this paper, we restrict ourselves to the case that there exists an
x0 ∈ Rn such that f (x0) ≤ f (s) for all s ∈ S.We describe a geometric
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dual object that can be used to certify optimality of a solution to (1).
To this end, fix such a point x0 and define a closed set C to be an
S-free neighborhood of x0 if x0 ∈ int(C) and int(C) ∩ S = ∅. Using
the convexity of f , it follows that for any s̄ ∈ S and any C that is an
S-free neighborhood of x0, the following holds:

f (s̄) ≥ inf
z∈bd(C)

f (z) =: L(C), (2)

where bd(C) denotes the boundary of C (to see this, consider the
line segment connecting s̄ and x0 and a point at which this line
segment intersects bd(C)). Thus, an S-free neighborhood of x0 can
be interpreted as a ‘‘dual object’’ that provides a lower bound of the
type (2). As a consequence, the following is true.

Proposition 1. If there exist s̄ ∈ S and C ⊆ Rn that is an S-free
neighborhood of x0, such that equality holds in (2), then s̄ is an optimal
solution to (1).

2. The dual problem

This motivates the definition of a dual optimization problem
to (1). For any family F of S-free neighborhoods of x0, define the
F-dual of (1) as

sup
C∈F

L(C). (3)

We say that strong duality holds with the F-dual, if there exists
C⋆
∈ F such that L(C⋆) = supC∈FL(C) = infs∈S f (s). For instance,

if the hypothesis of Proposition 1 holds for some C ∈ F , then
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one has strong duality with the F-dual. Assuming very mild con-
ditions on S and f (e.g., when S is a closed subset of Rn disjoint
from arg infx∈Rn f (x)), it is straightforward to show that if F is the
family of all S-free neighborhoods of x0, then strong duality holds,
i.e., there exist s̄ ∈ S and C ∈ F such that the condition in Propo-
sition 1 holds. However, the entire family of S-free neighborhoods
is too unstructured to be useful as a dual problem. Moreover, the
inner optimization problem (2) ofminimizing on the boundary of C
can be very hard if C has no structure other than being S-free. Thus,
we would like to identify subfamilies F of S-free neighborhoods that
still maintain strong duality, while at the same time, are much easier
to work with inside a primal–dual framework. We list below three
subclasses that we expect to be useful in this line of research. First,
we need the concept of a gradient polyhedron:

Definition 2. Given a set of points z1, . . . , zk ∈ Rn,

Q := {x ∈ Rn
: ⟨ai, x− zi⟩ ≤ 0, i = 1, . . . , k}

is said to be a gradient polyhedron of z1, . . . , zk if for every i =
1, . . . , k, ai ∈ ∂ f (zi), i.e., ai is a subgradient of f at zi.

Remark 3. For every gradient polyhedron Q of points z1, . . . , zk
we have L(Q ) = infx∈bd(Q )f (x) = mini∈[k]f (zi).

Indeed, note that a ∈ ∂ f (z) means that f (x) ≥ f (z)+ ⟨a, x− z⟩
holds for all x ∈ Rn.

Thus, for every x ∈ bd(Q ) wemust have ⟨ai, x−zi⟩ = 0 for some
i ∈ [k], which implies f (x) ≥ f (zi).

We consider the following families.

– The family Fmax of maximal convex S-free neighborhoods
of x0, i.e., those S-free neighborhoods that are convex, and
are not strictly contained in a larger convex S-free neigh-
borhood.

– The family F∂ of convex S-free neighborhoods of x0 that are
also gradient polyhedra for some finite set of points in Rn.

– The family F∂,S ⊆ F∂ of convex S-free neighborhoods of x0
that are also gradient polyhedra for some finite set of points
in S.

We propose the above families so as to leverage a recent surge of
activity analyzing their structure; the surveys [3] and Chapter 6
of [6] provide good overviews and references for this whole line of
work. Thiswell-developed theory provides powerfulmathematical
tools to work with these families. As an example, this prior work
shows that for most sets S that occur in practice (which includes
the integer andmixed-integer cases), the familyFmax only contains
polyhedra. This is good from two perspectives:

– polyhedra are easier to represent and compute with than
general S-free neighborhoods,

– the inner optimization problem (2) of computing L(C) be-
comes the problem of solving finitelymany continuous con-
vex optimization problems, corresponding to the facets of C .

Of course, the first question to settle iswhether these three families
actually enjoy strong duality, i.e., does strong duality hold with the
Fmax-dual, F∂ -dual and F∂,S-dual? It turns out that the main result
in [2] shows that for themixed-integer case, i.e., S = C∩(Zn1×Rn2 )
for some convex set C , the F∂ -dual enjoys strong duality under
conditions of the Slater type from continuous optimization. It is
not hard to strengthen their result to also show that strong duality
holdswith theFmax∩F∂ -dual, under some additional assumptions.

In this paper, we give conditions on S and f such that strong
duality holds with the family Fmax ∩F∂,S . Below we give an expla-
nation as to why this family is very desirable. If these conditions
on S and f are met, our result is stronger than Baes et al. [2]. For

example, when S is the set of integer points in a compact convex
set and f is any convex function, our certificate is a stronger one.
However, our conditions on S and f do not cover certain mixed-
integer problems; whereas, the certificate from Baes et al. still
exists in these settings. Having said that, it is not immediately
clear to us whether strong certificates like ours exist for all mixed-
integer problems.

3. Strong optimality certificates

Definition 4. A strong optimality certificate of size k for (1) is a set of
points z1, . . . , zk ∈ S together with subgradients ai ∈ ∂ f (zi) such
that

Q := {x ∈ Rn
: ⟨ai, x− zi⟩ ≤ 0, i = 1, . . . , k} is S-free, (4)

⟨ai, zj − zi⟩ < 0 for all i ̸= j. (5)

Remark 5. If a strong optimality certificate exists, then the infi-
mum of f over S is attained andwe havemins∈S f (s) = mini∈[k]f (zi).
In other words, given a strong optimality certificate, we can com-
pute (1) by simply evaluating f (z1), . . . , f (zk).

Indeed, recall that a ∈ ∂ f (z) means that f (x) ≥ f (z)+ ⟨a, x− z⟩
holds for all x ∈ Rn.

Since Q is S-free, for every s ∈ S there is some i ∈ [k] such that
⟨ai, s− zi⟩ ≥ 0 and hence f (s) ≥ f (zi).

In order to verify that z1, . . . , zk together with a1, . . . , ak form
a strong optimality certificate, one has to check whether the poly-
hedron Q is S-free. Deciding whether a general polyhedron is S-
free might be a difficult task. However, Property (5) ensures that
Q is maximal S-free, i.e., Q is not properly contained in any other
S-free closed convex set: Indeed, Property (5) implies that Q is a
full-dimensional polyhedron and that {x ∈ Q : ⟨ai, x− zi⟩ = 0} is a
facet of Q containing zi ∈ S in its relative interior for every i ∈ [k].
Since every closed convex set C that properly contains Q contains
the relative interior of at least one facet ofQ in its interior, C cannot
be S-free.

For particular sets S, the properties of S-free sets that are maxi-
mal have been extensively studied and aremuchbetter understood
than general S-free sets. For instance, if S = (Rd

× Zn) ∩ C
where C is a closed convex subset of Rn+d, maximal S-free sets are
polyhedra with at most 2n facets [11]. In particular, if S = Z2 the
characterizations in [8,10] yield a very simple algorithm to detect
whether a polyhedron is maximal Z2-free.

In order to state ourmain result, we need the notion of theHelly
number h(S) of the set S, which is the largest number m such that
there exist convex sets C1, . . . , Cm ⊆ Rn satisfying⋂
i∈[m]

Ci ∩ S = ∅ and
⋂

i∈[m]\{j}

Ci ∩ S ̸= ∅ for every j ∈ [m]. (6)

For an introduction to Helly numbers we refer to [9]. We are now
ready to state the main theorem of this paper.

Theorem 6. Let S ⊆ Rn and f : Rn
→ R be a convex function such

that

(i) O ̸∈ ∂ f (s) for all s ∈ S,
(ii) h(S) is finite, and
(iii) for every polyhedron P ⊆ Rn with int(P) ∩ S ̸= ∅ there exists

an s⋆ ∈ int(P) ∩ S with f (s⋆) = infs∈int(P)∩S f (s).

Then there exists a strong optimality certificate of size at most h(S).

Let us comment on the assumptions in Theorem 6. First, if O ∈
∂ f (s⋆) for some s⋆ ∈ S, then s⋆ is an optimal solution to (1) as well
as s⋆ ∈ arg infx∈Rn f (x). An easy certificate of optimality in this case
is the subgradient O.
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