Operations Research Letters 45 (2017) 671-674

journal homepage: www.elsevier.com/locate/orl

Contents lists available at ScienceDirect

Operations Research Letters

Operations
Research
_Letters

Optimality certificates for convex minimization and Helly numbers

P
@ CrossMark

Amitabh Basu ?, Michele Conforti”, Gérard Cornuéjols ¢, Robert Weismantel ¢,

Stefan Weltge ¢*

2 Johns Hopkins University, USA

b University of Padova, Italy

¢ Carnegie Mellon University, USA
4 ETH Ziirich, Switzerland

ARTICLE INFO ABSTRACT

Article history:

Received 20 October 2016

Received in revised form 26 May 2017
Accepted 1 October 2017

Available online 23 October 2017

Keywords:

Convex optimization
Duality

Helly numbers

We consider the problem of minimizing a convex function over a subset of R" that is not necessarily
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define a family of duals for this problem and show that, under some natural conditions, strong duality
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1. Introduction

Insights obtained through duality theory have spawned ef-
ficient optimization algorithms (combinatorial and numerical)
which simultaneously work on a pair of primal and dual prob-
lems. Striking examples are Edmonds’ seminal work in combina-
torial optimization, and interior-point algorithms for numerical/
continuous optimization.

Compared to duality theory for continuous optimization, du-
ality theory for mixed-integer optimization is still underdevel-
oped. Although the linear case has been extensively studied, see,
e.g., [4,5,13,14], nonlinear integer optimization duality was essen-
tially unexplored until recently. An important step was taken by
Moran et al. for conic mixed-integer problems [12], followed up by
Baes et al. [2] who presented a duality theory for general convex
mixed-integer problems. The approach taken by Moran et al. was
essentially algebraic, drawing on the theory of subadditive func-
tions. Baes et al. took a more geometric viewpoint and developed a
duality theory based on lattice-free polyhedra. We follow the latter
approach.

Given S C R" and a convex function f : R" — R, we consider
the problem

igsff(s). (1

In this paper, we restrict ourselves to the case that there exists an
Xo € R"suchthatf(xg) < f(s)foralls € S. We describe a geometric
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dual object that can be used to certify optimality of a solution to (1).
To this end, fix such a point xy and define a closed set C to be an
S-free neighborhood of xo if Xo € int(C) and int(C) NS = @. Using
the convexity of f, it follows that for any s € S and any C that is an
S-free neighborhood of x, the following holds:

f(8)= inf f(z)=:L(C), (2)
zebd(C)

where bd(C) denotes the boundary of C (to see this, consider the

line segment connecting 5 and xg and a point at which this line

segment intersects bd(C)). Thus, an S-free neighborhood of xy can

be interpreted as a “dual object” that provides a lower bound of the

type (2). As a consequence, the following is true.

Proposition 1. If there exist s € S and C C R" that is an S-free
neighborhood of xo, such that equality holds in (2), then's is an optimal
solution to (1).

2. The dual problem

This motivates the definition of a dual optimization problem
to (1). For any family F of S-free neighborhoods of xq, define the
F-dual of (1) as

sup L(C). (3)
CeF

We say that strong duality holds with the F-dual, if there exists
C* € F such that L(C*) = supccL(C) = infssf(s). For instance,
if the hypothesis of Proposition 1 holds for some C € F, then
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one has strong duality with the 7-dual. Assuming very mild con-
ditions on S and f (e.g., when S is a closed subset of R" disjoint
from arg infycrnf(x)), it is straightforward to show that if F is the
family of all S-free neighborhoods of xo, then strong duality holds,
i.e., there exist s € S and C € F such that the condition in Propo-
sition 1 holds. However, the entire family of S-free neighborhoods
is too unstructured to be useful as a dual problem. Moreover, the
inner optimization problem (2) of minimizing on the boundary of C
can be very hard if C has no structure other than being S-free. Thus,
we would like to identify subfamilies F of S-free neighborhoods that
still maintain strong duality, while at the same time, are much easier
to work with inside a primal-dual framework. We list below three
subclasses that we expect to be useful in this line of research. First,
we need the concept of a gradient polyhedron:

Definition 2. Given a set of points zy, ..., z, € R",

Q={xeR": (a,x—2z)<0, i=1,...,k}

is said to be a gradient polyhedron of zq, ..., z; if for every i =
1,...,k a; € 0f(z), i.e., a; is a subgradient of f at z;.

Remark 3. For every gradient polyhedron Q of points z4, ..., z
we have [(Q) = infyebd(q)f (%) = min;epf(z).

Indeed, note that a € df(z) means that f(x) > f(z) + (a,x — z)
holds for all x € R".

Thus, for every x € bd(Q ) we must have (a;, x—2z;) = 0 for some
i € [k], which implies f(x) > f(z).

We consider the following families.

- The family Fnax of maximal convex S-free neighborhoods
of xg, i.e., those S-free neighborhoods that are convex, and
are not strictly contained in a larger convex S-free neigh-
borhood.

- The family F; of convex S-free neighborhoods of xq that are
also gradient polyhedra for some finite set of points in R".

- The family 73 s € F; of convex S-free neighborhoods of xg
that are also gradient polyhedra for some finite set of points
inS.

We propose the above families so as to leverage a recent surge of
activity analyzing their structure; the surveys [3] and Chapter 6
of [6] provide good overviews and references for this whole line of
work. This well-developed theory provides powerful mathematical
tools to work with these families. As an example, this prior work
shows that for most sets S that occur in practice (which includes
the integer and mixed-integer cases), the family 7.« only contains
polyhedra. This is good from two perspectives:

- polyhedra are easier to represent and compute with than
general S-free neighborhoods,

- the inner optimization problem (2) of computing L(C) be-
comes the problem of solving finitely many continuous con-
vex optimization problems, corresponding to the facets of C.

Of course, the first question to settle is whether these three families
actually enjoy strong duality, i.e., does strong duality hold with the
Fmax-dual, Fy-dual and Fj s-dual? It turns out that the main result
in[2] shows that for the mixed-integer case, i.e.,S = CN(Z" xR"™)
for some convex set C, the F3-dual enjoys strong duality under
conditions of the Slater type from continuous optimization. It is
not hard to strengthen their result to also show that strong duality
holds with the 7. N Fy-dual, under some additional assumptions.

In this paper, we give conditions on S and f such that strong
duality holds with the family Fr,ax N F», 5. Below we give an expla-
nation as to why this family is very desirable. If these conditions
on S and f are met, our result is stronger than Baes et al. [2]. For

example, when S is the set of integer points in a compact convex
set and f is any convex function, our certificate is a stronger one.
However, our conditions on S and f do not cover certain mixed-
integer problems; whereas, the certificate from Baes et al. still
exists in these settings. Having said that, it is not immediately
clear to us whether strong certificates like ours exist for all mixed-
integer problems.

3. Strong optimality certificates

Definition 4. A strong optimality certificate of size k for (1) is a set of

points zy, ..., zx € S together with subgradients a; € 9f(z;) such
that

Q=xeR":{a,x—2z)<0,i=1,...,k}isS-free, (4)
(ai, z; — z;) < Oforalli #j. (5)

Remark 5. If a strong optimality certificate exists, then the infi-
mum of f over S is attained and we have minsesf(s) = minieyf(zi).
In other words, given a strong optimality certificate, we can com-
pute (1) by simply evaluating f(z1), . . ., f(z).

Indeed, recall that a € df(z) means that f(x) > f(z) + (a, x — z)
holds for all x € R".

Since Q is S-free, for every s € S there is some i € [k] such that
(ai, s — z;) > 0 and hence f(s) > f(z;).

In order to verify that zq, .. ., z; together with aq, ..., a; form
a strong optimality certificate, one has to check whether the poly-
hedron Q is S-free. Deciding whether a general polyhedron is S-
free might be a difficult task. However, Property (5) ensures that
Q is maximal S-free, i.e., Q is not properly contained in any other
S-free closed convex set: Indeed, Property (5) implies that Q is a
full-dimensional polyhedron and that {x € Q : (a;, x—z;)) = 0} isa
facet of Q containing z; € S in its relative interior for every i € [k].
Since every closed convex set C that properly contains Q contains
the relative interior of at least one facet of Q in its interior, C cannot
be S-free.

For particular sets S, the properties of S-free sets that are maxi-
mal have been extensively studied and are much better understood
than general S-free sets. For instance, if S = (R? x Z") N C
where C is a closed convex subset of R"*¢, maximal S-free sets are
polyhedra with at most 2" facets [11]. In particular, if S = Z? the
characterizations in [8,10] yield a very simple algorithm to detect
whether a polyhedron is maximal Z2-free.

In order to state our main result, we need the notion of the Helly
number h(S) of the set S, which is the largest number m such that
there exist convex sets Cy, ..., C;, € R" satisfying

ﬂC,ﬂS:Q) and ﬂ G NS # ¢ foreveryj € [m]. (6)
ie[m] iefm\{j}

For an introduction to Helly numbers we refer to [9]. We are now
ready to state the main theorem of this paper.

Theorem 6. Let S C R"and f : R" — R be a convex function such
that

(i) O & of(s)foralls €S,
(ii) h(S)is finite, and
(iii) for every polyhedron P € R" with int(P) NS # @ there exists
ans* € int(P) N S with f(s*) = infseintp)nsf (S).
Then there exists a strong optimality certificate of size at most h(S).
Let us comment on the assumptions in Theorem 6. First, if O €
of (s*) for some s* € S, then s* is an optimal solution to (1) as well

as s* € arginfyeprnf(x). An easy certificate of optimality in this case
is the subgradient O.
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