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a b s t r a c t

We have developed spectral signal processing methods for passive acoustic anomaly detection in nuclear
power plants. Furthermore, we compared the developed and existing methods by applying them to
stationary sounds recorded in a controlled environment. Our new methods show significant improvement,
in particular concerning robustness against false alarms. The results also demonstrate that clear detection
of a given sound at a given signal-to-noise ratio is highly dependent on the distribution of characteristic
frequency content in the spectrum in relation to the background noise and the spectral uncertainty. Since
the frequency monitoring principle used here is quite rigid, we stress the need for research on more flex-
ible methods, also taking into account differences between experiments and real reactor systems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Sodium fast reactors represent one possible option for reaching
Generation IV standards in nuclear power plants. Some objectives
of Generation IV reactor systems are to achieve better use of fuel
resources, transmutation of long-lived radioactive waste products
and excellent plant safety [1]. The latter requirement demands,
e.g. fast and reliable detection of all accident precursors that other-
wise would lead to more serious plant conditions. Two examples of
such accident precursors for sodium fast reactors are local coolant
boiling in the core and leaks between the primary and secondary
side of the steam generators or heat exchangers. Acoustic detection
methods have been studied for a relatively long time in this con-
text [2]. So have possible alternatives such as neutron flux moni-
toring for local coolant boiling and chemical methods for leak
detection [3,4], but the simplicity and prompt response of acoustic
methods have made them an interesting option. Both active and
passive acoustic methods may be envisaged, but in this study we
limit ourselves to passive methods.

The passive acoustic signal processing methods studied so far
may be crudely categorized into basic spectral methods using
Fourier or wavelet decomposition such as [5], auto-regressive mod-
eling as described in [6] and neural network methods, e.g. [7]. These
techniques are not completely independent of each other as neural
networks may take output from spectral methods or autoregressive
models as input and the latter, in a general context, also can be
viewed as spectral decompositions of a time domain signal.

For any pattern recognition problem, the detecting system may
be divided into a signal acquisition part, a feature extraction part
and a classification part which in this case provides the binary
anomaly-or-not output [8]. A feature in this context, denotes a
function of the raw input signal(s), defined in the time domain, in-
tended to reduce the dimension of the problem and to provide a
suitable input to the classifier. Whether a simple classifier such
as a single threshold rule or a complex neural network with many
input features is used, the performance of the whole system will be
dependent on the features used. Still, not many comparative stud-
ies of the basic feature extraction schemes proposed in the litera-
ture have been made and it is an important aim of this work to
start filling this gap.

One possible measure of the prestanda of a feature gðtÞ is the
detection margin, defined by the IAEA in [2] as:

DM½gðtÞ� ¼ 20log10

~gþ
~g�

� �
ð1Þ

where ~gþ denote the average value of gðtÞ during the positive detec-
tion region of the signal, i.e. where the sound to be detected is
known to be present. Similarly, ~g� denote the average value of
gðtÞ for pure background noise. Thus, it measures the ability of a
feature to rise high above its background level at onset of the signal
to be detected. For acoustic detection systems tested under
experimental conditions so far it has been difficult to demonstrate
detection capability at the low signal-to-noise ratios (SNR) present
at full power conditions of a real reactor and high false alarm rates
have been experienced. These facts suggest that developing new
features with even higher detection margin is of interest.
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In this work we have performed an experimental comparison of
detection margins of basic features from the literature by applying
them to pre-recorded sounds generated in a controlled acoustic
environment in the anechoic room of the Marcus Wallenberg lab-
oratory at KTH, Sweden. We also present two new features that
show considerably higher detection margin than the ones earlier
reported. We have chosen to work with the power spectral density
and the continuous wavelet transform, but all the features de-
scribed here can be applied to any spectral decomposition of a sig-
nal. The techniques demonstrated are in principle also applicable
to any binary classification problem at low SNR.

The signal processing techniques used are described in Sec-
tion 2, covering the spectral transform methods, Section 3 which
describes features already published in the literature and Section 4,
describing the two new features presented in this study. Then, the
experimental part of the work is described in Section 5 with results
and discussion given in Sections 5.4 and 5.5 Conclusions are given
in Section 6.

2. Transform methods

2.1. Power spectral density

An estimate of the power spectral density (PSD) of a signal xðtÞ
during a time window of length T is given by

PSDðf ; TÞ ¼ 1
T

Z T=2

�T=2
xðtÞe�j2pftdt

����
����
2

ð2Þ

This is a density function, which expresses the (generalized) power
present in each frequency of the signal. Since the time window is
finite, the signal values in the beginning and at the end of the win-
dow will have more uncertain frequency, yielding a quite noisy rep-
resentation of the spectrum.

A common method of overcoming this problem by decreasing
the uncertainty contribution and thereby smoothing the resulting
spectrum is the Welch method [9]. In this method, the PSD esti-
mate of the main time window is computed as an average of sev-
eral estimates of overlapping sub-windows. The signal xðtÞ is in
each sub-window also multiplied with some weighting function
aimed to give increasingly higher weight to signal values closer
to the middle of the sub-window.

2.2. Wavelet transform

The continuous wavelet transform (CWT) of a signal xðtÞ in a
time window of length T is given by

WXða; bÞ ¼
Z T=2

�T=2
xðtÞh t � b

a

� �
dt ð3Þ

where hðtÞ represents the mother wavelet. Different mother wave-
lets have been used for this and similar applications. E.g. [5] used
the Daubechies-04 mother wavelet whereas [11] used the complex
morlet, which is stated to be suitable for acoustic signals.

At each level a the wavelet decomposition defines a signal
XaðtnÞ ¼ Xða; bnÞ for each time sample tn ¼ bn. To create features
from these level signals, we use the square-root of sum of the
squares during the time window as an intermediate step, i.e.

XðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n
WX2ða; bnÞ

q
ð4Þ

3. Existing feature extraction methods

Let any transform of a signal xðtÞ taken over a time window T be
Xðc; TÞ, where c is the independent variable in the transform

domain, e.g. frequency for the PSD. We will from now on denote
this transform only by XðcÞ, implicitly assuming that the transform
will be continuously updated for each time window during the
monitoring/detection procedure.

3.1. Sum

In [10,5] the PSD is used to create a feature called power spectral
density sum, or PSDSUM, which is defined as the sum of pre-
selected frequency components. Denote the transform by X (e.g.
PSD as defined in (2) or CWT as defined in (4)). Let the pre-selected
transform components be c1; c2; . . . ; cN . Then, a generic sum feature
may be written as

XSUM ¼
XN

i¼1

XðciÞ ð5Þ

where the XðciÞ are updated in each new time window.

3.2. Direct and normal spectral distance

The direct and normal spectral distance features were proposed
in [12], measuring the distance change of the whole spectrum
vector. The direct spectral distance, (DSD) is defined as

DSD ¼ ~Xref �~XðcÞ
��� ��� ð6Þ

where X
!

ref is a reference spectrum of the pure background noise and
X
!
ðcÞ is updated. The normal spectral distance (NSD) is given by

NSD ¼ ~XðcÞ �~XðcÞ �
~Xref �~XðcÞ

~Xref

��� ��� ð7Þ

which measures only the part of the spectral change that is orthog-
onal to the background noise vector.

3.3. Functions of the covariance matrix

In principle, detection could be performed simply by monitor-
ing sums and distance measures of the selected frequency compo-
nents. However, when reaching sufficiently low SNR, the increase
in each transform component at onset of the sound to be detected
will be of the order of the spectral uncertainty. A solution is to
monitor covariance between the selected components. Conse-
quently, scalar functions of the covariance matrix, such as the trace
and determinant were suggested in [10], with the determinant
showing the highest detection margins. The covariance matrix is
given by

CMðXðciÞ;XðcjÞÞ ¼ E½ðXðciÞ � lXðciÞÞðXðcjÞ � lXðcjÞÞ� ð8Þ

Here, the lXðci=jÞ are averages taken over several PSDs from a nega-
tive detection (reference) region. During detection, the Xðci=jÞ values
are updated for each new time window. We will denote the features
created by the trace and determinant of this matrix with TRCM and
DETCM respectively.

4. New feature extraction methods

4.1. Square of determinant

At this point, we introduce two new features created from the
covariance matrix. First, we note that squaring can be used to en-
hance feature differences, a fact that was used in the twice-squaring
method presented in [13]. This suggests that simply taking the
square of the determinant of the covariance matrix would yield
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