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a b s t r a c t

An analytical study of mechanisms of active control of sound radiation from a rib stiffened plate is pre-
sented in this letter. Using the well-known modal expansion method to solve the beam/plate coupling
vibration response, the physical mechanisms are interpreted in an analytical way similar as that used
in the unribbed plate case. But some special rules are discovered for the ribbed plate case. The primary
characteristic for the ribbed plate is that its new resonant modes are essentially the superposition of a
couple of specific base plate modes that possess the same vibration pattern along the rib. These modes
should be all suppressed in controlled condition to achieve on-resonances noise reduction. A large
number of base plate modes contribute to off-resonances sound radiation such that multi-point forces
are needed to rearrange their amplitudes and phases to guarantee their sound radiation being canceled
each other. The imperfect control effects when control force acting on nodal areas of the mode of the
ribbed plate are due to the opposite vibration states of the corresponding base plate modes where the
control force applied for suppressing one mode may consequentially excite another.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Beams stiffened thin plates have been considered as classical
structural elements used in various engineering applications, such
as aircraft fuselages, and ship hulls. Since aerospace and marine
vehicles are continually subjected to uncertain dynamic loads,
the ribbed plates may be frequently excited with excessive
vibration levels which consequently induce high noise levels
within the cabin. Traditional passive methods for suppressing
noise radiation from vibrating structures work well in high and
middle frequency ranges. However, its performances deteriorate
rapidly in low frequency range where active methods [1] must
be introduced to remedy this insufficiency.

Though the vibration characteristics of the ribbed plate are
different from the unribbed case, but it is pertinent to predict that
low frequency noise radiation from ribbed plate also needs to be
controlled effectively by active method. Such topic of introducing
active means to complex ribbed structure has attracted little atten-
tion until now and in turn deserves to be investigated specially in
light of practical engineering requirements. Thus the purpose of
this letter is planning to explore physical mechanisms inherent
in the control process, which is hoped to provide some help for

ongoing work of maximally improving low frequency performance
of active ribbed plate structure.

An amount of approximate analytical and numerical methods
have been proposed for confident prediction of free vibration of
ribbed plates. These proposed approaches include the Rayleigh–
Ritz energy method [2–4], finite difference method [5],
semi-modal decomposition method [6], and differential quadra-
ture method [7] and so on. Numerical methods such as the finite
element method [8] (FEM) are extensively used nowadays in
industries due to their high accuracy and versatility. These works
gain a clear understanding of the vibration characteristics of com-
plex ribbed plates and have offered great guidance in preventing
their excessive vibration levels [9,10] and noise radiation [11] by
passive methods. Recently Dozio [12] and Lin [13,14] use the
well-known modal expansion method to predict free vibration
and input mobility characteristics of finite ribbed plates for the
requirement of estimating input power into the hull structure of
a ship due to the exterior excitations. The beam/plate interface is
modeled as a nonslip line connection in their model. Though the
assumption is only valid when the beam width is not greater than
the plate thickness, but the research is also significant since this
type of structure is widely adopted in aeronautic and marine
industry. Considering the feasibility of the analytical study, a sim-
plified model of a clamped single beam stiffened plate applying
controllable point forces to suppress low frequency noise radiation
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is established on the basement of Dozio and Lin’s works. The single
beam stiffened plate is used as an example so that attention can be
concentrated on understanding fundamental physical nature and
summarizing some preliminary rules. Clamped boundary edges
[15] are also chosen to meet practical requirement. The mechanism
is investigated using modal analysis method similar as that used in
the unribbed plate case. But the physical nature has distinctive
particularities that differ from the base plate. Due to the beam’s
coupling effects, the primary characteristic for the ribbed plate lies
in the fact that each resonant mode is the superposition of several
base plate modes. Thus modal suppression and modal rearrange-
ment mechanisms summarized in excited literatures [16] cannot
adequately and drastically explain physical natures of this case
and should be modified for the ribbed plate. Some further
deepened and detailed physical rules are summarized to offer
helps for designing so called active quiet structure.

2. Theoretical model

A clamped ribbed plate baffled in an infinite wall and the asso-
ciated coordinate system are shown in Fig. 1. The ribbed plate con-
sists of a clamped base plate and a clamped beam, and the
beam/plate interface is considered as a nonslip line connection.
As a result of plate bending, the beam is subject to bending and tor-
sion deformations where the coupling force F and coupling
moment M should be considered at the beam/plate interface.
Then the governing equation of motion of each substructure is
reinforced by this pair of coupling loads.

Under an oblique incident plane wave excitation, the governing
equations of the bending displacement ðwÞ of the base plate and
the beam flexural and torsional displacements ðU; hÞ have the same
structures similar as these listed in [12]. The primary excitation
piðx; y; tÞ ¼ p0ejðxt�kx sin h cos a�ky sin h sin aÞ and the controllable point
force f s ¼ Fsdðx� xs; y� ysÞejxt should be added into the right side
of the bending displacement equation of the plate. In light of the
modal superposition theory, these displacements ðw;U; hÞ can all
be expressed as the superposition of a finite number of mode
shapes. Further applying the two compatibility conditions at the
beam/plate interface [UðyÞ ¼ wðxb; yÞ and hðyÞ ¼ @w=@xðxb; yÞ] can
educe the following matrix equation that the modal amplitudes
of the base plate satisfy,

ðK�x2MÞw ¼ Q p þ FsQ s: ð1Þ

where K and M are the stiffness and mass matrix, and the expres-
sion of their ðmn; pqÞ element can be referenced in [12].
w ¼ ðw11;w12; . . . wMNÞT is the modal amplitudes vector of the
clamped base plate. Q p is the generalized primary modal force vec-
tor, Qp;mn ¼

R
A piðx; yÞ/mðxÞwnðyÞdA. Q s is the generalized secondary

modal force vector, Qs;mn ¼ /mðxsÞwnðysÞ, where ðxs; ysÞ is the loca-
tion on which the control point force acts.

Let the excitation terms in the right side of Eq. (1) equal to zero,
the resulting equation is the generalized form of eigenproblem for
the coupled beam/plate structure. This homogeneous equation

which poses a non-standard eigenvalue problem represents the
free vibration characteristic of the coupled rib and plate structure.
The lth eigenvalue kl and eigenvector Q l can be solved from the
sparse eigenequation by easily performing matrix transformations.
The eigenvectors (Q 1;Q 2 . . . ;Q l . . .) are actually a set of orthogonal
base functions that represent the resonant vibration patterns of the
rib/plate coupled structure. The elements in each vector are the
ratio coefficients of these base plate modes that participate in
the coupled ribbed plate mode. And the eigenvalue kl accordingly
represents the resonant frequency of the lth ribbed plate mode.
Then the lth resonant mode shape of the ribbed plate
wrib-plate;lðx; yÞ and the resonant frequency f rib-plate;l can be recovered
as,

wrib-plate;lðx; yÞ ¼ Sðx; yÞT wl; ð2-aÞ

f rib-plate;l ¼
ffiffiffiffi
kl
p

2p
: ð2-bÞ

where S ¼ ½/1w1;/1w2; . . . ;/1wN; . . . ;/MwN�
T
; smnðx; yÞ ¼ /mðxÞwnðyÞ

is the mode shape function of the base plate. M and N are the upper
modal index considered in the simulation along the x and y axis,
respectively.

According to the discrete elemental approach, the power output
of the ribbed plate can be expressed as follows [17] when it is
evenly divided into Ne elements,

W ¼ VHRV: ð3Þ

where H denotes complex conjugate transpose, V is the velocity
vector for an array of Ne elemental radiators. R ¼ DSReðZÞ=2;Z is
the Ne � Ne transfer impedance matrix. The modal amplitudes w
of the clamped base plate can be solved from Eq. (1), and then
the power output can be reexpressed as

W ¼ ðaþ bFsÞHRðaþ bFsÞ; ð4-aÞ

a ¼ jxUðK�x2MÞ�1
Q p; ð4-bÞ

b ¼ jxUðK�x2MÞ�1
Q s: ð4-cÞ

where U is Ne � ðM � NÞmatrix that is consisted of the values of the
mode shape functions of the base plate on Ne elements. Given that
matrix R is real, symmetrical and positive definite, Eq. (4-a) has a
Hermitian quadratic form. Using the linear quadratic optimal
method, Eq. (4-a) will have a unique minimal value when the opti-

mal control force amplitude Fs ¼ �ðbHRbÞ
�1

bHRa.

3. Active control results

In the simulation, assume that the plate and beam are both
made of aluminum with density q ¼ 2790 kg/m3, Young’s modulus
E ¼ 7:2� 1010 N/m2, and Poisson’s ratio m ¼ 0:34. The plate has a
surface area of 0:6� 0:42 m2 and thickness of 0.003 m, while the
beam is 0.42 m long with a flat rectangular cross section of
A ¼ 0:003� 0:02 m2 which is located at xb ¼ 0:15 m. It is further
assumed that the plate and beam both have a constant internal loss
factor g ¼ 0:01 which is added into the complex Young’s modulus
Eð1þ giÞ to make simulation results further close to the practical
situation [13]. The primary excitation is a plane wave with ampli-
tude P0 ¼ 1 Pa, incident at h ¼ p=4 and a ¼ p=4. Two secondary
point forces are located at (0.5, 0.32) and (0.1, 0.32), respectively.
The solution for the first sets of modes is well converged with
acceptable accuracy when M ¼ N ¼ 10. With these parameters
the first six eigenfrequencies and mode shape functions of the
ribbed plate are calculated as shown in Table 1 and Fig. 2, which
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Fig. 1. The ribbed plate model and the illustration of the associated coupling force
and moment excitations.
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