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a b s t r a c t

This paper examines the sound insulation of a single-leaf wall driven by a spherical wave. The transmit-
ted sound field of an infinite elastic plate under a spherical wave incidence is theoretically analyzed and
insulation mechanisms are considered. The displacement of the plate is formulated using the Hankel
transform in wavenumber space and the transmitted sound pressure in the far-field is obtained by Ray-
leigh’s formula in an explicit closed form. Moreover, a reduction index is also derived in a closed form by
introducing an approximation into the vibration characteristics of the plate. Deterioration of the insula-
tion performance under the spherical wave incidence is caused by an apparent decrease of wall imped-
ance that depends on the directivity of the transmitted sound wave. The mass law for a spherical wave
incidence is different from that for a normal plane wave incidence: doubling the weight of the wall or the
frequency gives an increase of 3 dB (c.f. 6 dB for a normal plane wave incidence), which is also smaller
than the field incidence mass law.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The fundamental theory of the mass law for the sound insula-
tion of a single-leaf wall is widely used in architectural acoustics
today [1]. The mass law is simply derived from the relationship
between a normal plane wave incidence and the mechanical
impedance of an infinite plate, and indicates that doubling the
weight of the wall or the frequency yields a 6 dB increase in the
reduction index.

The normal incidence mass law has been conventionally devel-
oped into random incidence conditions [2] by considering oblique
incidence, because normal incidence is not practical for evaluating
actual walls. Random incidence is obtained by averaging the trans-
mission coefficients for oblique incidences over a hemisphere. This
approach, which is based on a completely diffuse sound field, does
not fully reflect the actual sound field incidence conditions in
rooms, and so various methods of truncating the angle of incidence
up to a certain limit angle have been proposed [3,4].

The angle of incidence also affects the bending vibration of the
plate, which is well known as the coincidence effect. When elastic
plates are accompanied by bending vibrations due to an oblique
plane wave incidence, the reduction index becomes lower than
the mass law above a critical frequency. A fundamental theory

for the range above the critical frequency has been established
[5], and a number of researchers have developed it further [6,7].

In order to increase the insulation performance of walls, various
multiple-leaf walls have been proposed and widely used in actual
buildings. For example, the insulation characteristics of a double-
leaf wall, each of which is an isolated single-leaf wall, are basically
governed by the sum of the mass law of each leaf. In practice,
sound is transmitted via the structural coupling and the acoustic
coupling due to the air between the two leaves and so the insula-
tion performance is lower than that expected by a simple sum of
the mass law [8]. Since the coupling mechanisms between leaves
are very complicated, a number of theoretical and empirical mod-
els for predicting the sound insulation have been proposed [9,10].

In this way, the mass law of a single-leaf wall is the fundamen-
tal principle of sound insulation in architectural acoustics, which
consider various plane wave incidences, i.e. normal, oblique and
diffuse (random). In actual buildings, however, a wall may be ex-
cited by a small sound source nearby, in which case, the wall is ex-
pected to be driven not by a plane wave but by a spherical wave.
Takahashi et al. [11] initially analyzed the sound insulation for a
spherical wave incidence. In the literature, they gave a numerical
solution for executing the wavenumber space integral for the
transmitted sound power. Based on numerical examples, they con-
cluded that the reduction index for the spherical wave incidence
was lower than that for the plane wave incidence. Villot et al.
[12] also studied the transmission of sound through a wall excited
by a small sound source by using a numerical solution, and ob-
tained similar results.
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As described above, the sound insulation for spherical wave
incidence has been investigated to some extent, but neither the
reason why the reduction index for a spherical wave is lower than
that for a plane wave, nor the quantitative difference between
them is clear. To gain a physical insight into the differing insulation
performance between a spherical wave incidence and normal
plane wave incidence, this paper theoretically analyzes the trans-
mitted sound field of an infinite elastic plate driven by a spherical
wave, and obtains a solution in an explicit closed form. Using the
solution, the insulation mechanism under the spherical wave inci-
dence is clarified. Furthermore, a mass law formula for a spherical
wave incidence is derived and discussed in comparison with that
for normal and diffuse plane waves.

2. Theory

Consider an infinite elastic plate lying in the plane, z = 0, in
Fig. 1, that vibrates under spherical wave incidence from a point
source, (0, 0, ds). The sound pressure, p1(r), at a certain point, r,
in region I is expressed by the following integral:

p1ðrÞ ¼ p0ðrÞ þ p00ðrÞ þ
ZZ

S1

@p1ðr0Þ
@n0

Gðrjr0ÞdS0; ð1Þ

where p0(r) is the direct sound pressure from a point source and
p00ðrÞ is the pressure contributed from its image source. The double
integral denotes the integral over all regions of the boundary, i.e.,
the plate’s source side surface, S1 and n0 denotes the outward nor-
mal of the region I. G(r|r0) denotes Green’s function satisfying the
Neumann condition for a single boundary with infinite extent,
and is as follows:

Gðrjr0Þ ¼
expðik0jr� r0jÞ

4pjr� r0j
þ

exp ik0 r� r00
�� ��� �

4p r� r00
�� �� ; ð2Þ

where k0 is the acoustic wavenumber in air with x the angular fre-
quency and c0 the sound speed in air. The time dependence of ex-
p(�ixt) is suppressed throughout. In region II, the sound pressure
at a certain point, r, p2(r) is written in a similar form:

p2ðrÞ ¼
ZZ

S2

@p2ðr2Þ
@n0

Gðrjr0ÞdS0; ð3Þ

where the double integral in this equation denotes the integral over
all regions of the boundary, i.e., the plate’s back side surface, S2, and
n0 denotes the outward normal in region II. The boundary condi-
tions on the plate surfaces are:
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@n0

����
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@z0

����
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2wðrÞ : source side; ð4Þ
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@n0
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����
z¼0
¼ q0x

2wðrÞ : back side; ð5Þ

where w(r) is the displacement of the plate and q0 is the air density.
Considering these conditions and using the cylindrical coordinate
system, r = (q, z) = (r, /, z) and r0 = (q0, z) = (r0, /0, z0), p1(r) and
p2(r) become:

p1ðrÞ ¼ p0ðr;0Þ þ p00ðr;0Þ � q0x
2
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where the polar angle, / is suppressed because the problem is axi-
symmetrical. J0 denotes the Bessel function of order zero and k is
the transform variable. Pj(k) and W(k) are the angular spectrums
with respect to r of pj(r) and w(r), respectively, as defined by the fol-
lowing Hankel transform pairs:

Pjðk; zÞ ¼
R1

0 pjðr; zÞJ0ðkrÞrdr j ¼ 1;2

pjðr; zÞ ¼
R1

0 Pjðk; zÞJ0ðkrÞkdk j ¼ 1;2

"
; ð8Þ

WðkÞ ¼
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0 wðrÞJ0ðkrÞrdr

wðkÞ ¼
R1

0 WðrÞJ0ðkrÞkdk

"
: ð9Þ

Since the pressure of spherical waves from the real and image
source become identical on the plate’s surface, i.e., p0ðrÞ ¼ p00ðrÞ
on z = 0, these can be written by considering the amplitude of
the spherical wave from a unit power point source, i.e.,
(8pq0c0)1/2:

p0ðr;0Þ ¼ p00ðr;0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s
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The plate is forced into vibration by the difference in sound
pressure between both sides of the plate. In accordance with the
classical thin plate theory, the equation of motion for the plate is
as follows:

ðDr4 � qphx2ÞwðrÞ ¼ p1ðr;0Þ � p2ðr;0Þ; ð11Þ

where D = E(1 � ig)h3/12(1 � l2) is the flexural rigidity of the plate
with E Young’s modulus, h the thickness, g the loss factor l the
Poisson’s ratio and qp the density of the plate. Solving Eqs. (6),
(7), (10), and (11) for W(k) by using the Hankel transform gives
the displacement of the plate in the wavenumber space [13]:
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: ð12ÞFig. 1. Analytical model in cylindrical coordinates. An infinite elastic plate (shaded)
lies in the plane, z = 0. The plate vibrates under spherical wave incidence from a
point source, (0, 0, ds).
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