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a b s t r a c t

In this paper we review some of recent developments in high dimensional data analysis,
especially in the estimation of covariance and precision matrix, asymptotic results on the
eigenstructure in the principal components analysis, and some relevant issues such as
test on the equality of two covariance matrices, determination of the number of principal
components, and detection of hubs in a complex network.
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1. Introduction

Consider a p-dimensional random vector X = (X1, . . . , Xp)t , where Xi could be, for example, the ith gene expression in
microarray data. We are interested in the dependency of X ′

i s, and the dependencies of all the X ′

i s can be represented by a
network. If p is very large, then the networks will be very complicated, and we call it complex network. Examples of complex
networks are biological networks, the world-wide web, the social networks, etc. We can figure out the complex networks
by a graph which represents the relationship between Xi and Xj, 1 ≤ i ̸= j ≤ p.

Consider a graph G = G(V , E), where V = {1, . . . , p} is the set of nodes (vertices) and E is the set of edges in V × V . Let
aij, i, j = 1, . . . , p denote the adjacency between two nodes i and j, and A = (aij) is called an adjacencymatrix. In many cases
aij takes real values between 0 and 1, however, it is not necessary. A graph is called directed if aij ̸= aji, and called undirected
if aij = aji. Hence, the correlation matrix, for example, is undirected. The degree of the ith node is denoted as di =

∑p
j=1aij,

D = diag(d1, . . . , dp) is the degree matrix, and the Laplacian matrix is defined as L = D − A. Note that if the given network
consists of k separate groups, then k + 1 eigenvalues of the Laplacian matrix are zero and all others are positive.

Graph theory has been developed by mathematicians for a long time, and mathematicians are interested in properties
of eigenvalues of adjacency matrix; distribution of eigenvalues (Marcenko & Pastur, 1967; Wigner, 1955) and distribution
of the largest eigenvalue (Tracy & Widom, 1996), lower and/or upper bound of eigenvalues, relationship between degree
and eigenvalues, and so on. There are numerous books on the graph theory, we suggest Mieghem (2010) among others. On
the other hand, statisticians paid attention to the graph theory quite recently, and they are mainly interested in graphical
models and estimation of adjacency matrix using available observations.

When a graph is given, our primal interest is investigating the structure of a graph. To be more specific, we want to
estimate the dependency of Xi and Xj, the clustering structure of a graph, detection of hubs, and theoretical results for the
estimators of interest, etc. There are two types of dependency; marginal and conditional dependence between Xi and Xj.
The marginal dependency is the correlation between Xi and Xj, however, the conditional dependency is the conditional
correlation between Xi and Xj given all the X ′

i s except Xi and Xj. Therefore, the marginal dependency can be estimated by the
estimation of the covariance matrix, and conditional dependency can be estimated by the estimation of the inverse of the
covariance matrix, also called the precision matrix (Dempster, 1972).

One of apparent characteristics of modern statistical data is high dimensionality. This phenomenon is often called ‘‘small
n, large p’’, while most of the classical statistical tools are for ‘‘large n, small p’’ setting. The ‘‘small n, large p’’ problem starts
with the advent ofmicroarray data in genomics in the early 2000. Sample size n is just tens or hundreds of patients (or normal
people), while the number of variables p is thousands or tens of thousands of genes. Since then lots of studies are focused on
the analyses of high dimensional data because the existing methods cannot be directly applicable to the high dimensional
data. Especially, estimation of the covariance matrix based on a standard method is not desirable in many respects.

The most important concept in high dimensional inference is sparsity, and there are many ways of imposing sparsity.
In covariance and precision matrix estimation, the naive one is banding or tapering (see Section 2.2 for definitions) in the
elements of covariance or precision matrix itself. The other one is using the penalty function like lasso. Another approach is
using the principal component analysis (PCA) which is widely used as a dimension reduction tool in themultivariate data. In
fact, the sparse PCA is based on the spiked covariancemodel by assuming that only few eigenvalues of the covariancematrix
are much larger than others.

The studies for investigating the structure of a graph, including the estimation of the covariance matrix in the high
dimensional setup, are very active and are published a lot recently in major statistical journals. Also, major journals treated
high dimensional inference as special issues; For example, High Dimensional Inference and Random Matrices in the Annals
of Statistics, Vol. 36, No. 6 (2008), and Special Issue on Large Dimensional Models in the Econometric Journal, Vol. 19, Issue 1
(2016).

In this paper, we review developments in statistical methods for the analysis of complex networks especially in high
dimensional setup. We tried to cover relevant works as many as possible, however, we are limited to provide a selective
review on complex networks and covariance estimation because all the relevant studies are too vast to be covered. For the
high dimensional covariance estimation, Fan, Liao, and Liu (2016) and Pourahmadi (2013)made good reviews among others.

This paper is different from the previously published review papers in two aspects. First, we tried tominimize presenting
theoretical results as possible because this paper is intended to introduce basic concepts rather than theoretical results
in high dimensional inference. Second, we tried to provide global approach to high dimensional inference motivated by
complex networks which can be presented by a graph. This paper is organized as follows: In Section 2, two types of
dependencies (marginal and conditional) are defined and corresponding estimation problems (covariance and precision
matrix). Also, results on testing two covariance matrices are introduced. In Section 3, the Tracy–Widom law and some
results on the PCA are reviewed. Also, approaches based on the spiked covariance model and the factor model are reviewed.
Further, studies on the determination of the number of principal components and recent statistical developments via
the Laplacian matrix are introduced. Finally, an illustrative example showing the difference between the conditional and
marginal dependencies is given. Concluding remarks are given in Section 4.
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