The joint distribution of the sample minimum and maximum from a smooth distribution on $\left[w_{1}, w_{2}\right.$]

Christopher S. Withers ${ }^{\text {a }}$, Saralees Nadarajah ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Industrial Research Limited, Lower Hutt, New Zealand
${ }^{\mathrm{b}}$ University of Manchester, Manchester M13 9PL, UK

A R TICLE INFO

Article history:

Received 27 September 2017
Accepted 23 February 2018
Available online xxxx
AMS 2000 subject classifications:
primary 62E99
Keywords:
Density function
Maximum
Moments

Abstract

We give expansions in inverse powers of the sample size n for the joint distribution function of the sample extremes when sampling from any smooth distribution on a finite interval when its density function is positive at its end points.

© 2018 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many variables in real life take values in finite intervals. The best known examples are proportions. Often interest is on extreme values of such variables, for example, lowest and highest proportions of people affected by a deadly disease.

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution on a finite interval. Suppose $Z_{n 1}$ denotes a suitably normalized $\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and belongs to the Weibull domain of attraction such that

$$
\begin{equation*}
\text { Prob. }\left(Z_{n 1}>z_{1}\right) \rightarrow e^{-z_{1}} \tag{1}
\end{equation*}
$$

as $n \rightarrow \infty$. Suppose $Z_{n 2}$ denotes a suitably normalized - $\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and belongs to the Weibull domain of attraction such that

$$
\begin{equation*}
\text { Prob. }\left(Z_{n 2}>z_{2}\right) \rightarrow e^{-z_{2}} \tag{2}
\end{equation*}
$$

as $n \rightarrow \infty$. Both (1) and (2) hold if for example the sample is from the uniform [0, 1] distribution.
There is much work on the asymptotic joint distribution of sample minimum and sample maximum. For example, Leadbetter, Lindgren, and Rootzen (1983) showed under certain general conditions that sample minimum and sample maximum are asymptotically independent. If (1) and (2) hold then under certain general conditions

Prob. $\left(Z_{n 1}>z_{1}, Z_{n 2}>z_{2}\right) \rightarrow e^{-z_{1}-z_{2}}$,

$$
\begin{equation*}
\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{2}} \operatorname{Prob} .\left(Z_{n 1} \leq z_{1}, Z_{n 2} \leq z_{2}\right) \rightarrow e^{-z_{1}-z_{2}} \tag{3}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
E Z_{n 1}^{r} Z_{n 2}^{S} \rightarrow r!s! \tag{5}
\end{equation*}
$$

\]

as $n \rightarrow \infty$. In practice, n is finite. It can never be infinity. So, models based on (3)-(5) cannot be realistic. Realistic models can be obtained by deriving expansions for the joint distribution of the minimum and maximum. Liao and Peng (2015) and Lu and Peng (2017) give the most recent work on the asymptotics of the joint distribution of the minimum and maximum.

The aim of this note is to derive expansions for the distributions of the minimum and maximum of a random sample of values in a finite interval. We derive expansions for the joint distribution function, joint density function and product moments. These expansions can be used for improved statistical modeling of the minimum and maximum. The expansions for the joint distribution function can be used for improved percentile estimation. For instance, by Corollary 3.1,

$$
\text { Prob. }\left(Z_{n 1}>z_{1}, Z_{n 2}>z_{2}\right)=e^{-z_{1}-z_{2}}\left(1+Q_{1} n^{-1}\right)
$$

which can be expected to perform better than (1). The expansions for the joint density function can be used for improved maximum likelihood estimation. For instance, by Corollary 3.1,

$$
\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{2}} \operatorname{Prob.}\left(Z_{n 1} \leq z_{1}, Z_{n 2} \leq z_{2}\right)=e^{-z_{1}-z_{2}}\left(1+q_{1}^{\prime} n^{-1}\right)
$$

which can be expected to perform better than (2). The expansions for the moments can be used for improved moments estimation. For instance, by Corollary 3.1,

$$
E Z_{n 1}^{r} Z_{n 2}^{s}=r!s!+M_{r s 1} n^{-1}
$$

which can be expected to perform better than (3).
The known work giving expansions for the joint distribution of sample minimum and sample maximum has focused on specific distributions or processes: a Brownian motion (Choi \& Roh, 2013); the normal distribution (Shiryaeva, 2013); autoregressive process of order one (Withers \& Nadarajah, 2015); and so on. We are aware of no work giving expansions for the joint distribution for general classes.

Let X_{1}, \ldots, X_{n} be a random sample with minimum m_{n} and maximum M_{n} from any distribution function $F(x)$ on a finite interval $\left[w_{1}, w_{2}\right]$ with finite derivatives $\left\{F_{. r}(x), r \geq 0\right\}$ at its endpoints w_{1}, w_{2}. However, $F_{. r}(x)$ need not exist in $\left(w_{1}, w_{2}\right)$.

Section 2 gives the joint distribution function and product moments of

$$
\begin{equation*}
\mathbf{Y}_{n}=\left(Y_{n 1}, Y_{n 2}\right)=n\left(m_{n}-w_{1}, w_{2}-M_{n}\right) \tag{6}
\end{equation*}
$$

in terms of

$$
\begin{equation*}
A_{r}=F_{. r}\left(w_{1}\right) / r!, B_{r}=F_{. r}\left(w_{2}\right) / r! \tag{7}
\end{equation*}
$$

as expansions in powers of n^{-1}. Note that

$$
\begin{equation*}
Y_{n 1} \geq 0, Y_{n 2} \geq 0, Y_{n 1}+Y_{n 2} \leq e_{n}=n\left(w_{2}-w_{1}\right) \tag{8}
\end{equation*}
$$

and $B_{0}=1, A_{1} \geq 0, B_{1} \geq 0$. We assume that $A_{0}=0$ (that is F does not have an atom at w_{1}), and $A_{1}>0, B_{1}>0$. So, the density function of $F(x)$ is positive at its end points. For example, this rules out the beta distribution except for the uniform distribution.

Section 3 gives the joint distribution function and product moments of

$$
\begin{equation*}
\mathbf{Z}_{n}=\left(Z_{n 1}, Z_{n 2}\right)=\left(A_{1} Y_{n 1}, B_{1} Y_{n 2}\right)=n\left(A_{1}\left(m_{n}-w_{1}\right), B_{1}\left(w_{2}-M_{n}\right)\right) \tag{9}
\end{equation*}
$$

in terms of

$$
\begin{equation*}
a_{r}=\bar{a}_{r}=A_{r} / A_{1}^{r}, b_{r}=B_{r} / B_{1}^{r}, \bar{b}_{r}=(-1)^{r} b_{r} \tag{10}
\end{equation*}
$$

as expansions in powers of n^{-1} under the same conditions. This considerably simplifies the results of Section 2. Sections 4 and 5 give the distribution function and moments of the marginals of \mathbf{Y}_{n} and \mathbf{Z}_{n} under the same conditions. Section 6 shows that $\operatorname{corr}\left(Z_{n 1}, Z_{n 2}\right)=O\left(n^{-1}\right)$ and outlines how to deal with the case $A_{1}=0$ or $B_{1}=0$.

We need some notations. For $n, r=0,1, \ldots$, set $(n)_{r}=n!/(n-r)!=n(n-1) \cdots(n-r+1)$. Let $\delta_{i, j}=I(i=j)$ denote the Kronecker delta function. For a sequence $\mathbf{c}=\left(c_{1}, c_{2}, \ldots\right)$ of real or complex numbers, define the partial ordinary Bell polynomial, $\widetilde{B}_{r, k}=\widetilde{B}_{r, k}(\mathbf{c})$, by

$$
\left(\sum_{r=1}^{\infty} c_{r} t^{r}\right)^{k}=\sum_{r=k}^{\infty} \widetilde{B}_{r, k} t^{r}
$$

for $t \in C$, the plane of complex numbers, and $k=0,1, \ldots$. Comtet (1974) tabled $\widetilde{B}_{r, k}$ on page 309 for $1 \leq r \leq 10$. Bell polynomials are valuable tools for handling power series.

https://daneshyari.com/en/article/7546002

Download Persian Version:
https://daneshyari.com/article/7546002

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: kit.withers@gmail.com (C.S. Withers), mbbsssn2@manchester.ac.uk (S. Nadarajah).

