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a b s t r a c t

In this paper, we propose a Bayesian variable selectionmethod for linear regressionmodels
with high-order interactions. Our method automatically enforces the heredity constraint,
that is, a higher order interaction term can exist in the model only if both of its parent
terms are in the model. Based on the stochastic search variable selection George and
McCulloch (1993), we propose a novel hierarchical prior that fully considers the heredity
constraint and controls the degree of sparsity simultaneously. We develop a Markov chain
Monte Carlo (MCMC) algorithm to explore the model space efficiently while accounting
for the heredity constraint by modifying the shotgun stochastic search algorithm Hans et
al. (2007). The performance of the new model is demonstrated through comparisons with
othermethods. Numerical studies on both real data analysis and simulations show that our
newmethod tends to find relevant variablemore effectively when higher order interaction
terms are considered.
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1. Introduction

Suppose that we observe (x1, y1), . . . , (xn, yn) from n subjects, where xi = (xi1, . . . , xip) are the predictors and yi is the
response. To capture the relationship between the response and the predictors, onemay consider the following linearmodel:

yi = β0 +

p∑
j=1

βjxij + ϵi, i = 1, . . . , n, (1)

where ϵi ∼ N(0, σ 2). One of the main interests of regression analysis is to select a subset of predictors that are relevant to
the response.

When the main terms x1, . . . , xn are not sufficient to capture the relationship between the response and the predictors,
it can be helpful to add higher order interactions to the model. An interaction, as a product of a pair of predictors, can be
consideredwhen one predictor has different effects on the response depending on values of the other predictor. For example,
interactions between geneticmarkers and environmental factors, denoted as G×E, are emphasized as one potential source of
missing genetic variations for human disease risk (Khoury &Wacholder, 2009). There are numerous examples of the effects
of G×Es on disease risk such as for bladder cancer and skin cancer (Green & Trichopoulos, 2002; Hung et al., 2004).

In this paper, we consider a regression model with main terms and all possible second-order interaction terms:

yi = β0 +

p∑
j=1

βjxij +
∑
j<k

αjkxijxik + ϵi. (2)
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The main goal is to identify which terms, especially which interaction terms, have an important effect on the response. By
adding interaction terms to themodel,wemay face two challenges: (1) the increased number of terms and (2) the complexity
in the relations among predictors. First, having 2nd-order interaction terms increases the number of terms significantly
from p to p + p(p − 1)/2, which can be easily larger than the sample size n. Hence, we would like to select a small subset
of predictors if possible. Second, when interaction terms exist, there is a hierarchical relation among the predictors, that
is, main terms are more important than interaction terms. In other words, we may include an interaction term only if one
(called weak heredity) or both (called strong heredity) of the parental main terms are also included in the model (Bien,
Taylor, & Tibshirani, 2013; Wu & Hamada, 2000). In this paper, we focus on variable selection in applications where such a
hierarchical relation is desired.

Traditional variable selection methods include stepwise selection and criterion-based approaches such as Mallows’ Cp
(Mallows, 1973). However, methods based on criteria are unstable when the number of predictors is large (Miller, 2002).
Alternatively, penalized approaches, such as LASSO, have been studied extensively (Breiman, 1995; Fan& Li, 2001; Tibshirani,
1996). However, penalizedmethods do not necessarily obey the heredity constraint. There have been efforts to extend LASSO
for hierarchical variable selection (Bien et al., 2013; Choi, Li, & Zhu, 2010); however, thesemethods are not easy to implement,
and they may not be consistent of the model choice in certain situations (Meinshausen & Buhlmann, 2006; Zou, 2006).

In this paper, we propose a Bayesian variable selection method enforcing heredity constraints, herein focusing on
strong heredity, based on the stochastic search variable selection (SSVS), proposed by George and McCulloch (1993). We
propose a novel hierarchical prior for SSVS, which fully considers the strong heredity and controls the degree of sparsity
simultaneously. In addition, we develop a computational algorithm to explore the model space efficiently under the strong
heredity by modifying the shotgun stochastic search (SSS) algorithm (Hans, Dobra, & West, 2007). The SSS algorithm has an
advantage over other SSVS algorithms (Madigan & York, 1995; Raftery, Madigan, & Hoeting, 1997) in the sense that the SSS
algorithm can be implemented through parallel processing. The proposed algorithm also has this advantage.

The remainder of this paper is as follows: In Section 2, we review SSVS and present our method and prior distributions.
Section 3 extends the SSS algorithm to apply it to variable selection under the strong heredity principle. In Sections 4 and 5,
we present numerical studies, including a simulation and a real data example, to show that ourmethod outperforms existing
methods. Concluding remarks are given in Section 6.

2. Bayesian models

2.1. Stochastic search variable selection for main terms

In this section, we present a short review on stochastic search variable selection (SSVS). Here, we consider the regression
model with only main terms: As in (1), we have p predictors, X1, X2, . . . , Xp, and a response y from n subjects, where
Xj = (x1,j, . . . , xn,j) and y = (y1, . . . , yn). In SSVS, George and McCulloch (1993) introduced a binary latent variable γj to
identify whether the corresponding jth predictor Xj should be included in the model and used the prior

π (γj | wj) = w
γj
j (1 − wj)1−γj ,

where wj is the inclusion probability. Often wj = 1/2 is assumed. In Bayesian inference, the posterior mean of γj, denoted
by γ̄j, represents the posterior inclusion probability of predictor Xj in the regression models. A higher γ̄j indicates that the
covariate Xj is more important in predicting the response.

Conditioning on γj, the prior distribution of βj is given as a normal mixture:

βj|γj ∼ γjN(0, σ 2τ 2) + (1 − γj)N(0, σ 2ν2), for j = 1, . . . , p,

where 0 < ν2
≪ τ 2. Note that σ 2 is the noise variance in (1). If γj = 1, βj has a normal prior with a large variance that is

sufficient to stay away from zero. In contrast, if γj = 0, βj has a normal prior with a narrow peak at zero, which results in βj
being close to zero.

For the remaining parameters, we use the following improper priors

π (σ 2) =
1
σ 2 , π (ν2, τ 2

| σ 2) =
1
σ 2 (1 +

ν2

σ 2 )
−2

×
1
σ 2 (1 +

τ 2

σ 2 )
−2

× I{ν2<τ2}

that are used by Scott and Berger (2006).

2.2. Stochastic search variable selection for interaction terms

Now, we consider the extended model (2), which includes main terms and interaction terms. By including interaction
terms, we require additional binary variables γj,k (j = 1, . . . , p − 1 and k = 1, . . . , p), which indicates the inclusion state of
an interaction term XjXk in a regression model. The role of γj,k is the same as γj, indicating the importance of the covariate
XjXk. Each model can be identified by the binary latent vector γ = (γ1, . . . , γp, γ1,2, . . . , γp−1,p). For a regression coefficient
αj,k, we assume the following normal mixture prior distribution:

αj,k|γj,k ∼ γj,kN(αj,k; 0, σ 2τ 2) + (1 − γj,k)N(αj,k; 0, σ 2ν2)

with the same hyper-parameters σ 2, ν2 and τ 2 in the prior distribution of βj.
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