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a b s t r a c t

We consider a regularized D-classification rule for high dimensional binary classification,
which adapts the linear shrinkage estimator of a covariance matrix as an alternative to
the sample covariance matrix in the D-classification rule (D-rule in short). We find an
asymptotic expression formisclassification rate of the regularized D-rule, when the sample
size n and the dimension p both increase and their ratio p/n approaches a positive constant
γ . In addition, we compare its misclassification rate to the standard D-rule under various
settings via simulation.

© 2017 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Classification for high dimensional data is one ofmain research topics in last several decades,where the high dimensional
data are now prevalent in every discipline. The binary classification is a multivariate procedure, in which we first build a
classifier from training samples with known memberships, and then assign a new observation x into one of two disjoint
populations πi, i = 1, 2 using its features. A large number of methods for binary classification have been proposed in the
literature, many of which based on a Bayes classifier (under 0-1 loss). The Bayes classifier is the optimal classifier in terms
of minimizing the misclassification rate and is often set as the benchmark when solving classification problems. However,
it depends on unknown model parameters including those in a covariance matrix. The estimation of the covariance matrix
fromhigh dimensional data and its application to the classification is themain theme of this paper. Throughout the paper, we
assume that sample size n (more precisely, both n1 and n2 increase with the same rate and n = n1 + n2) and the dimension
p increase with the rate that p/n → γ , where γ ∈ (0, 1); and we do not make any structural assumptions including the
sparsity on the model or classifier.

Suppose x11, . . . , x1n1 from class 1 are distributed as (µ1,Σ), and x21, . . . , x2n2 from class 2 are distributed as (µ2,Σ).
The D-classification rule (or simply D-rule) is the classifier that assigns a new observation x into class i, if

det(Ai) = min
j

det(Aj),
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where Aj = A + αj(x − x̄j)(x − x̄j)⊺, A =
∑2

l=1
∑nl

k=1(xlk − x̄l)(xlk − x̄l)⊺ and αj = nj/(nj + 1) with j = 1, 2. It also can be
expressed as

αi(x − x̄i)⊺S−1(x − x̄i) = min
j

αj(x − x̄j)⊺S−1(x − x̄j), (1)

where S = A/n with n = n1 + n2. The D-rule is not a new classifier, but appears in the literature with several other names.
We can show that it is asymptotically equivalent to the well-known Fisher’s linear discriminant with simple algebra. Also,
when the training data are fromnormal distributions, it is the Bayes classifier when assuming an equal cost for false positives
and negatives and a uniform prior for two populations, where the mean and covariance matrices are estimated with their
sample counterparts.

The D-rule above contains the sample covariance matrix, which is known to be inconsistent for high dimensional data.
Many alternative estimators are proposed for either structural (e.g., sparsity or bandedness) or non-structural covariance
matrices (Bickel & Levina, 2008a, 2008b; El Karoui, 2008; Won, Lim, Kim, & Rajaratnam, 2013). Here, we make no structural
assumption on themodel or covariancematrix. The linear shrinkage covariancematrix estimator by Ledoit andWolf (2004)
is the most popular non-structural estimator,

Sδ = S + δIp, (2)

where Ip is a p × p identity matrix and δ is a positive constant. It linearly shrinks the sample eigenvalues to those of
the target matrix and reduces the expected estimation loss of the sample covariance matrix (Ledoit & Wolf, 2004). It is
also successfully applied to many high-dimensional procedures to resolve the difficulties from the high dimensionality.
For example, Lanckriet, El Ghaoui, Bhattacharyya, and Jordan (2002) intuitively propose to use Sδ in building a robust
classifier when S is not well defined. Schafer and Strimmer (2005) reconstruct a gene regulatory network from microarray
gene expression data using the inverse of a regularized covariance matrix. Guo, Hastie, and Tibshirani (2007) suggest the
regularized discriminant analysis and apply it to classifying the data from a microarray experiment. Pyun, Lim, and Gray
(2009) applies the linear shrinkage estimator Sδ to finding a vector quantizer that is robust to various noisy sources. Chen,
Paul, Prentice, and Wang (2011) and Lee, Lim, Son, Jung, and Park (2015) propose a modified Hotelling’s T 2-statistic for
testing high dimensional mean vectors and finding differentially expressed gene sets. Recently, Choi, Ng, and Lim (2017)
propose to modify the likelihood ratio test for testing the covariance structure and show that the modified LRT significantly
improves the power when both n and p are large.

Not surprisingly, the regularized D-rule with the linear shrinkage covariance matrix estimator is also studied by several
authors including Friedman (1989) and Kubokawa, Hyodo, and Srivastava (2013). In particular, Kubokawa et al. (2013)
studies the expected misclassification rate of the regularized D-rule, and compare it to the standard D-rule as we do in
this paper. However, there are two major differences between our work here and the results by Kubokawa et al. (2013).
First, in Kubokawa et al. (2013), the regularization parameter δ is an order of O(n−1), whereas it is an order of δ = O(1)
in this paper. Thus, the regularization by Kubokawa et al. (2013) becomes infinitesimal as n increases. Second, due to the
magnitude of the regularization for large n, the approximate expected misclassification rate by Kubokawa et al. (2013)
depends on τ , the limit of n1/(n1 + n2), and there are cases when the regularized D-rule performs worse than the original
D-rule. Unlike Kubokawa et al. (2013), by using δ = O(1), the asymptotic results in Section 3 do not depend on τ and the
regularized D-rule always has smaller expected misclassification rate than the original D-rule in asymptotic regardless of τ .
We add the detailed comparisons in Section 5.

The remainder of the paper is organized as follows. The regularized D-rule of this paper is formally introduced, and its
misclassification rate is expressed in Section 2. In Section 3,we study the asymptoticmisclassification rate for the caseΣ = Ip
and compare it to the original D-rule. In Section 4, we numerically compare the misclassification rates of the regularized
D-rule and original D-rule for various choices of general Σ . In Section 5, we compare our results in this paper to those
by Kubokawa et al. (2013). An example of improvements of accuracy by the regularized D-rule is illustrated with real data
in Section 6. We conclude the paper in Section 7 with a brief summary and discussion on the choice of δ.

2. Regularized D-rule: General

Suppose x11, . . . , x1n1 are drawn from Np(µ1,Σ) and x21, . . . , x2n2 are drawn from Np(µ2,Σ) with µ1, µ2 and Σ

unspecified.
The regularized D-rule classifies an observation x to class 1 if

α1(x − x̄1)⊺S−1
δ (x − x̄1) < α2(x − x̄2)⊺S−1

δ (x − x̄2), (3)

where

Sδ = S + δIp =
1
n

2∑
i=1

ni∑
k=1

(xik − x̄i)(xik − x̄i)⊺ + δIp. (4)
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