
Please cite this article in press as: Tang, L., et al., Estimation and inference of combining quantile and least-square regressions with missing data. Journal
of the Korean Statistical Society (2017), https://doi.org/10.1016/j.jkss.2017.09.005.

Journal of the Korean Statistical Society ( ) –

Contents lists available at ScienceDirect

Journal of the Korean Statistical Society

journal homepage: www.elsevier.com/locate/jkss

Estimation and inference of combining quantile and
least-square regressions with missing data
Linjun Tang *, Shengchao Zheng, Zhangong Zhou
Department of Statistics, Jiaxing University, Jiaxing 314001, China

a r t i c l e i n f o

Article history:
Received 11 March 2017
Accepted 26 September 2017
Available online xxxx

AMS 2000 subject classifications:
62F03
62F05
62F12

Keywords:
Missing data
Inverse-probability weights
Smoothing techniques
Empirical likelihood

a b s t r a c t

In this paper, we consider how to incorporate quantile information to improve estimator
efficiency for regressionmodel withmissing covariates.We combine the quantile informa-
tion with least-squares normal equations and construct an unbiased estimating equations
(EEs). The lack of smoothness of the objective EEs is overcome by replacing them with
smooth approximations. The maximum smoothed empirical likelihood (MSEL) estimators
are established based on inverse probability weighted (IPW) smoothed EEs and their
asymptotic properties are studied under some regular conditions. Moreover, we develop
two novel testing procedures for the underlying model. The finite-sample performance of
the proposed methodology is examined by simulation studies. A real example is used to
illustrate our methods.
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1. Introduction

The regression analysis with missing covariates is a practical problem in biomedical, epidemiologic and social research.
The missing at random (MAR) in sense of Rubin (1976) is a common assumption for statistical analysis with missing data
and is often reasonable in many practical situations. A naive approach of handling missing data is a complete-case (C–C)
analysis, which uses only data points with complete observation. However, a C-C analysis may lead to a biased estimator
when the missing data mechanism is MAR. To overcome this problem, Robins, Rotnitsky, and Zhao (1994) developed an
inverse probability weighting (IPW) estimating method for regression model with missing covariates. In the past ten years,
the IPW method has received considerable attention as a well-known technique for handling missing data. For example,
Little and Rubin (2002), and Tsiatis (2006) proposed the IPW estimators for linear model with missing covariates. Liang
(2008) and Wong, Guo, Chen, et al. (2009) further extended this method to semi-parametric and nonparametric models
with missing data, respectively. However, the aforementioned estimations are mainly built on least squares (LS), which can
cause an unreliable estimator without normality of errors.

To obtain a robust estimator, Sherwood, Wang, and Zhou (2013) developed IPW quantile regression (IPW-QR) method
for linear model with missing covariates. Much of the literature views quantile regression (QR) as an alternative to LS (see
e.g., Yang and Liu, 2016; Sun and Sun, 2015). A major difficulty of QR is that the asymptotic covariance of estimators is
often cumbersome to obtain due to need an estimate of regressor density. Furthermore, QR estimator only considers some
quantilemoment condition and resultant estimatormight suffer efficiency loss. Thesemotivated Zhou, Alan, andWan (2011)
to combinemean andmedian regression and proposed the coherent estimation framework. Their theoretical and numerical
results have shown that LS regression combined with median one not only leads to a more efficient estimators when model
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error are symmetric, but also results in a relatively simple calculation of estimators standard error. Based on the same idea,
Zhao, Wang, and Zhou (2016) considered the estimator of censored linear model by combining the quantile information
with censored least-squares normal equations. However, the interest of this paper is to extend this idea to regression model
with missing covariates when some quantile information of model error is available. Consider the model

Y = XTβ + ε, (1.1)

where Y is an observable response variable, β is a p×1 vector of parameter, and some values of the covariates, denoted as V
with X = (UT , V T )T , may bemissing at random for some reasons. Let {(Yi,Ui, Vi, δi)}ni=1 be a random sample from population
of (Y ,U, V , δ), where Zi = (Yi,UT

i )
T are fully observed, and δi = 0 if Vi is missing, otherwise δi = 1. In current paper, we

assume that Vi is MAR. That is

P(δi = 1|Yi,Ui, Vi) = P(δi = 1|Yi,Ui) = π (Zi, γ ) > 0, (1.2)

where π (·, γ ) is a known function and γ is unknown parameter.
Our objective in this paper is to improve the statistical inference onmodel (1.1) by using some prior quantile information

on model error. Firstly, we combine least-squares with quantile regression to develop a coherent estimation framework.
We use a kernel-based smoothing technique to overcome the lack of smoothness of the objective EEs, and establish the
MSEL estimators based on IPW smoothed EEs. Secondly, we propose a novel statistic based on difference between empirical
likelihood ratios of the null hypotheses and alternative hypotheses, and discuss its limiting distribution. Finally, we develop
two testing procedures based on adjusted test statistic and bootstrap method. Numerical studies show that two proposed
testing procedures are both indeed powerful.

The rest of this paper is arranged as follows. In Section 2, we apply smoothing technique and IPW method to construct
an asymptotic unbiased estimating equations for missing covariates. The estimation and test procedures based on empirical
likelihood method are established in Sections 3 and 4. Simulation studies and a real data analysis are given in Section 5. In
Section 6 we provide our conclusions. The technical conditions and proofs of theorems are provided in Appendix.

2. The IPW smoothing estimating equation

Along lines of Zhou et al. (2011), we can estimate β in model (1.1) without any missing data based on the following EEs:

ψ(Y , X, β) =

(
ψ1(Y , X, β)
ψ2(Y , X, β)

)
=

(
X(Y − XTβ)

X[τ − I(Y − XTβ ≤ cτ )]

)
, (2.1)

where the first part of (2.1) is based on the LS normal equations, and the second part of (2.1) is based on τ -quantile conditions
of ε, i.e., P(ε ≤ cτ ) = τ . By the MAR assumption and the iterative expectation formula, we have

E
[ δi

π (Zi, γ )
ψ(Yi, Xi, β)

]
= Eψ(Yi, Xi, β) = 0. (2.2)

Therefore, we can show that

1
n

n∑
i=1

δi

π (Zi, γ )
ψ(Yi, Xi, β) =

1
n

n∑
i=1

δi

π (Zi, γ )

(
ψ1(Yi, Xi, β)
ψ2(Yi, Xi, β)

)
= 0, (2.3)

are unbiased EEs. It is noted that (2.3) is consisting of 2p EEs, but only has p unknown parameters. Hence, it is over-
determined for estimating β . An ordinary estimating method is infeasible here, but EL method has achieved respectability.
However, a major difficulty here is that functions ψ2(Y , X, β) obtained from quantile information are non-differentiable
about β . To solve this problem, we introduce the kernel-based technique developed in Zhou et al. (2011) to smooth
ψ2(Y , X, β). Consider a smoothing r-order kernel function l(·) satisfying∫

ujl(u)du =

{1 if j = 0
0 if 1 ≤ j ≤ r − 1
νr ̸= 0 if j = r

. (2.4)

for some integer r ≥ 2. The bandwidth bn → 0 and nbn → ∞ as n → ∞. For the sake of conveniencewedefine the condition
τ -quantile function of Y as qτ (X, β) = XTβ+cτ . In current paper,we consider the smoothed version ofψ2(Y , X, β) as follows:

φ2(Y , X, β) = X
{
τ −

∫
I
(
Y − qτ (X, β) + bnξ ≤ 0

)
dL(ξ )

}
= XT

[
τ − L

(qτ (X, β) − Y
bn

)]
, (2.5)

where L(ξ ) =
∫ ξ
0 l(u)du. Let β0 be the true value of β . Assume that QX (µ) = EX

(
Xτ − I(Y − µ ≤ 0)

)
is a rth continuously

differentiable in the neighborhood of β0. We have

Eφ2(Y , X, β0) = E
{∫

QX (µ)dL
(µ− qτ (X, β0)

bn

)}
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