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a b s t r a c t

In this paper, we extend the methodology proposed in Abry and Didier (2018) to obtain
the first joint estimator of the real parts of the Hurst eigenvalues of n-variate operator
fractional Brownianmotion (OFBM). Theprocedure consists of aweighted regression on the
log-eigenvalues of the sample wavelet spectrum. The estimator is shown to be consistent
for any time reversible OFBM and, under stronger assumptions, also asymptotically normal
starting from either continuous or discrete time measurements. Simulation studies estab-
lish the finite-sample effectiveness of themethodology and illustrate its benefits compared
to univariate-like (entry-wise) analysis. As an application, we revisit the well-known self-
similar character of Internet traffic by applying the proposedmethodology to 4-variate time
series of modern, high quality Internet traffic data. The analysis reveals the presence of a
rich multivariate self-similarity structure.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

An operator fractional Brownian motion (OFBM) BH = {BH (t)}t∈R is a Rn-valued Gaussian stochastic process with
stationary increments that satisfies the operator self-similarity relation

{BH (ct) : t ∈ R}
L
= {cHBH (t) : t ∈ R}, (1)

valid for all c > 0, where L
= stands for the equality of finite-dimensional distributions. In relation (1), which generalizes

the univariate concept of self-similarity, H is a n × n matrix called the Hurst matrix, and cH = exp(ln cH), where exp A =

A0/0! + A1/1! + · · · is the usual matrix exponential. If the Jordan form

H = PJHP−1 (2)

is diagonalizable with real (Hurst) eigenvalues for a nonsingular P , then the eigenvectors form a coordinate system in which
the qth marginal {BH (t)q}t∈R of BH , for q ∈ {1, . . . , n}, is a fractional Brownian motion (FBM) with Hurst scaling index hq
(namely, a Gaussian, self-similar, stationary increment stochastic process); see [41,106]. These coordinate processes need
not be independent. It is generally assumed that OFBM is proper, namely, its variance matrix EBH (t)BH (t)∗ has full rank for
t ̸= 0.
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OFBM is a multivariate fractional process. Univariate fractional processes have been used with great success in the
modeling of data sets from many fields of science, technology and engineering; see, e.g., [24,46,61,76,107]. The litera-
ture on the probability theory and statistical methodology for univariate fractional processes is now voluminous; see,
e.g., [5,12,14,15,25,31,39,47,49,55,77,85–87,94,96,97,103–105], to cite a few.

In modern applications, however, data sets are often multivariate, since several natural and artificial systems are moni-
tored by a large number of sensors. Accordingly, the literature on multivariate fractional processes has been expanding at a
fast pace. The contributions include [13,56,57,59,62–65,71,78,98,100] in the time and Fourier domains, and [7,9,29,48,110]
in the wavelet domain. See also [58,79,89,99,102] on the related fractional cointegration literature in econometrics.

The framework of operator self-similar (o.s.s.) random processes and fields was originally conceived by Hudson and
Mason [60], and by Laha and Rohatgi [66]; it has attractedmuch attention recently; see, e.g., [16,26,27,35–38,40,50,70,72,80,
95,115]. If H = diag(h1, . . . , hn) and P = I in (1), then the latter relation breaks down into simultaneous entry-wise
expressions

{BH (ct) : t ∈ R}
L
= {(ch1BH (t)1, . . . , chnBH (t)n)∗ : t ∈ R}, (3)

where c > 0. Relation (3) is henceforth called entry-wise scaling. Several estimators have been developed by building upon
the univariate-like, entry-wise scaling laws, e.g., the Fourier-based multivariate local Whittle [88,101] and the multivariate
wavelet regression [8,110]. However, if H is non-diagonal, then the matrix P mixes together the several entries of BH . In this
case, the univariate-like statistical analysis of each entry of Y will often generate estimates that are undetermined convex
combinations of Hurst eigenvalues or, at large scales, estimates of the largest Hurst eigenvalue; see, e.g., [4,22,34,108].

In [2], the use of the eigenstructure of wavelet variance matrices is proposed for the estimation of the Hurst parameters
of OFBM. The main results are obtained in the bivariate context, in which it is shown that wavelet log-eigenvalues – and
also wavelet eigenvectors, under assumptions – are consistent and asymptotically normal estimators of the eigenstructure
of the Hurst matrix H .

In this paper, we extend this approach by proposing a wavelet eigenvalue regression estimator of the Hurst eigenvalues
of n-variate OFBM. The estimator is shown to be consistent for the real parts of the eigenvalues of H for essentially any
time reversible OFBM, using one wavelet octave. Under the stronger assumption that Hurst eigenvalues are real and simple
(pairwise distinct), we further show that the wavelet eigenvalue regression estimator is asymptotically normal. Establishing
the latter properties involves showing that the wavelet log-eigenvalues themselves are a consistent and asymptotically
normal estimator of (the real parts of) the eigenvalues of the Hurst matrix; see Theorems 2–3 and Corollary 2—see also
Remark 2 for an intuitive discussion of consistency. Under the additional assumption that the matrix of Hurst eigenvectors
P (mixing, or coordinates, matrix) in (2) is orthogonal, a consistent sequence of wavelet eigenvectors is also shown to
exist; see Corollary 1. With a view toward hypothesis testing, we also investigate conditions for asymptotic normality when
all Hurst eigenvalues are equal (Proposition 2). The mathematical framework builds upon the Courant–Fischer variational
characterization of eigenvalues (see (A.1)) and ismuchmore general than that in [2], which relies on closed form expressions
for eigenvalues and eigenvectors in dimension 2.

In the context of scaling properties, the use of eigenanalysis was first proposed by Meerschaert and Scheffler [83,84] for
operator stable laws, and later by Becker-Kern and Pap [13] for o.s.s. processes in the time domain. It has also been used
in the cointegration literature; see, e.g., [51,69,93,116]. The wavelet framework has well-documented benefits, such as:
(i) robustness with respect to contamination by polynomial trends [30]; (ii) for a sample size ν, the fast wavelet transform
may reach computational complexity O(ν), which is even lower than that of the fast Fourier transform [75]; (iii) quasi-
decorrelation of several families of stochastic processes [10,11,44,81,85–87,114], which often leads to Gaussian confidence
intervals. By contrast, for example, it iswell known that sample covariancematrices are sensitive to contamination by trends,
that they can be strongly dependent, and that estimators based on them may be asymptotically non-Gaussian; see [20],
Theorem 1; [28], Proposition 1; or [94], Chapter 5.

Computational efficiency is especially important in a multivariate setting. The proposed wavelet eigenvalue approach
permits a characterization of scaling laws in data without resorting to an optimization procedure and by using, instead,
the fast computation of wavelet transforms and matrix eigenvalues; see, e.g., [21] on computational issues involved in
multivariate Gaussian maximum likelihood. Moreover, the methodology is robust with respect to changes of coordinates
(Hurst eigenvectors). This reduces the dimension of the relevant parameter space and can further serve to gauge scaling
data analysis based on estimators that do account for coordinates or other parameters; see, e.g., [4].

To the best of our knowledge, we are proposing the first provably asymptotically normal eigenanalysis-based estimator of
scaling or Hurst eigenvalues in general dimension n, under assumptions. In fact, the operator self-similarity property of the
sample wavelet varianceWa{a(ν)2j

} (see Eq. (15)) points to the asymptotic normality of wavelet log-eigenvalues in view of
that of the fixed scale sample wavelet varianceWa(2j). Based on Taylor expansions, establishing the asymptotic distribution
of the largest wavelet variance log-eigenvalue (and the smallest, by taking thematrix inverse) is not particularly challenging
since thewavelet eigenvalue limit scaling law is always driven by the largest Hurst eigenvalue. However, the scaling behavior
of intermediate wavelet log-eigenvalues is typically dominated by higher divergent eigenvalues. Under conditions such as
real and simple Hurst eigenvalues, we show that the latter issue can be tackled by a characterization of the asymptotic
behavior of wavelet eigenvectors, whose convergence cancels explosive terms; see Proposition 1, part (iv). Themost general
case of multiple blocks of Hurst eigenvalues with algebraic multiplicity greater than 1 (see Section 2 on terminology) calls
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