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a b s t r a c t

Expert systems routinely use conditional reasoning. Conditionally specified statistical
models offer several advantages over joint models; one is that Gibbs sampling can be used
to generate realizations of the model. As a result, full conditional specification for multiple
imputation is gaining popularity because it is flexible and computationally straightforward.
However, itwould be restrictive to require that every regression/classificationmust involve
all of the variables. Feature selection often removes some variables from the set of predic-
tors, thus making the regression local. A mixture of full and local conditionals is referred
to as a partially collapsed Gibbs sampler, which often achieves faster convergence due
to reduced conditioning. However, its implementation requires choosing a correct scan
order. Using an invalid scan order will bring about an incorrect transition kernel, which
leads to the wrong stationary distribution. We prove a necessary and sufficient condition
for Gibbs sampling to correctly sample the joint distribution. We propose an algorithm
that identifies all of the valid scan orders for a given conditional model. A forward search
algorithm is discussed. Checking compatibility among conditionals of different localities is
also discussed.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Expert systems routinely use conditional reasoning. Inmedical diagnosis, for example, the probability of a specific disease
is always stated conditionally, based on the results of various clinical tests and risk factors. Likewise in multiple imputation,
missing values are imputed conditionally on the observed values of a subject. The advent of graphical tools facilitates the
depiction of conditional reasoning.

In directed acyclic-graph (DAG) modeling [13], risk factors and tests results are presented as parental nodes that have a
direct causal effect on the disease, which is called a child node. Subsequently, the disease, alongwith treatments, become the
parental nodes toward associated complications. Diagnostic systems based on DAGs can become highly complex, making
the learning of the joint distribution computationally burdensome. Because DAG does not allow feedbacks from child
nodes, Heckerman et al. [7] argue for the use of a dependence network (DN) in the context of machine learning.

Graphically, a DN is represented by a directed cyclic graph, which is in essence a collection of conditional distributions.
Briefly, a DN is built using a two-step approach: (i) creating a conditional model for every variable, given the remaining
variables, and (ii) ‘‘gluing’’ the conditionally specifiedmodels together to form the joint distribution. As an example, consider
three variables X , Y , Z . In Step (i), three separate regression models – say using backward variable selection – are built,
viz. p1(x|y, z), p2(y|z), p3(z|x). Such a DN is depicted in Fig. 1. Unlike DAGs, DNs allow loops like X → Z → Y → X .
Important advantages of a DN over a DAG are its flexibility and the convenience in building onemodel at a time. For Step (ii),
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Gibbs sampling (GS) has been suggested for approximating the joint distribution; see [7]. For the DN of Fig. 1 and an initial
(x0, y0, z0), GS draws y1 from p2(y|z0), followed by x1 from p1(x|y1, z0), and finally z1 from p3(z|x1). The sequential order of
sampling here is Y → X → Z → Y . Is this the only correct sequence? And are the simulated (xt , yt , zt ) correct samples of
the joint distribution? Based on Example 1 in Section 2, the answers may surprise some practitioners of GS.

Let y = (y1, . . . , yd) be a permutation of x = (x1, . . . , xd) whose joint probability density function (JPD), f (x), is needed for
inference. The recursive factorization in the sequence of y is f (x) =

∏d
i=1pi(yi|y>i), where y>i = {yi+1, . . . , yd} and y>d = ∅.

This factorization is also called the hierarchical Bayesian model where only yk → yi, k > i is allowed. However, specifying
hierarchically d such conditional probability densities (CPD) is not always practical. For example, missing value imputations
are not hierarchical. Thus, DN attempts to define f (x) from M = {pi(yi|Ci) : i ∈ {1, . . . , d}} with Ci ⊆ y−i ≡ y\{yi}.
Hereafter,M is called a conditionally specified statistical model (CSSM). In the statistical literature, CPD pi(yi|y−i) is called a
full conditional, and pi(yi|Ci) is called a collapsed conditional when Ci is a proper subset of y−i. We would suggest global and
local conditionals, respectively, as more suitable names.

After a M = {pi(yi|Ci) : i ∈ {1, . . . , d}} is proposed to define a JPD, three mathematical issues need to be settled.

(i) Compatibility: Are the CPDs consistent with a JPD?
(ii) Sufficiency: Does M have sufficient information to define a d-dimensional JPD?
(iii) Implementation of Gibbs sampling: When M is both compatible and sufficient, can GS be used to simulate the JPD?

If yes, then in what sequence?

The main contribution of this paper is to give a necessary and sufficient condition under which the iterative GS generates
correct samples of JPD, and to propose an algorithm that identifies all the valid scan sequence. The proof of themain theorem
is in Section 2, with illustrative examples. Applications of the theorems, reduced conditioning, and a compatibility check are
discussed in Section 3.

2. Valid scan orders for implementing Gibbs sampling

Under compatibility and the positive condition of Besag [1], Gelman and Speed [5,6] establish the following sufficient
condition.

Theorem 1. A CSSM M determines a unique JPD for x = (x1, . . . , xd) if there exists a permutation y = (y1, . . . , yd) of x such
that M = {pi(yi|Bi, y>i) : Bi ⊆ y<i, i ∈ {1, . . . , d}}.

Theorem 1 requires that a sufficientMmust contain at least one full conditional, p1(y1|y>1). If every Bi = ∅, thenM is a
hierarchial Bayesian model, and when some Bis are nonempty, M is a DN with feedback loops, i.e., yj → yi for some j < i.
The following example shows that the condition of Theorem 1 does not guarantee that GS can always be implemented.

Example 1. Consider the following JPD:

(x1, x2, x3) (0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)
f (x1, x2, x3) 1/20 3/20 4/20 2/20 3/20 3/20 3/20 1/20

Compute M = {f (x1|x2, x3), f (x2|x1, x3), f (x3)} from the above f (x1, x2, x3). Let yi = xi for i ∈ {1, 2, 3}. With B1 = ∅,
B2 = {y1} and B3 = ∅, M satisfies the sufficient condition of Theorem 1. The following table lists the six stationary JPDs
along with their respective scan orders.

Scan Order (0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)
y1 → y2 → y3 137

1360
207
1360

230
1360

106
1360

137
1360

207
1360

230
1360

106
1360

y1 → y3 → y2 94
1700

228
1700

376
1700

152
1700

235
1700

285
1700

235
1700

95
1700

y2 → y1 → y3 681
6800

1003
6800

1199
6800

517
6800

681
6800

1003
6800

1199
6800

517
6800

y2 → y3 → y1 43
680

129
680

112
680

56
680

86
680

86
680

126
680

42
680

y3 → y1 → y2 31
680

111
680

124
680

74
680

106
680

96
680

106
680

32
680

y3 → y2 → y1 161
3400

483
3400

704
3400

352
3400

520
3400

520
3400

495
3400

165
3400

None of the stationary distributions is the original f (x1, x2, x3), therefore, GS cannot be used. □

The following theorem provides a necessary and sufficient condition for implementing GS. The additional requirement is
that the Bi must be nested.

Theorem 2. Assume a compatible CSSM M = {f (xi|Bi, x>i) : Bi ⊆ x<i, i ∈ {1, . . . , d}} is sufficient to define a unique JPD
f (x) = f (x1, . . . , xd). Gibbs sampling in the order of xd → xd−1 → · · · → x1 can be used to generate correct samples of f (x)
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