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a b s t r a c t

In this paper we consider the problem of segmenting n aligned random sequences of equal
length m into a finite number of independent blocks. We propose a penalized maximum
likelihood criterion to infer simultaneously the number of points of independence as well
as the position of each point.We show how to compute exactly the estimator bymeans of a
dynamic programming algorithm with time complexity O(m2n). We also propose another
method, called hierarchical algorithm, that provides an approximation to the estimator
when the sample size increases and runs in time O{m ln(m)n}. Our main theoretical results
are the strong consistency of both estimators when the sample size n grows to infinity. We
illustrate the convergence of these algorithms through some simulation examples and we
apply the method to identify recombination hotspots in real SNPs data.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The problem of multiple sequence segmentation and dimensionality reduction is of crucial importance for many applied
areas, including the analysis of multiple alignments of DNA/RNA and Amino Acid (AA) sequences. In these cases, one of
the main goals is to investigate some aspects of the genetic variation, for example, inferring which genomic regions can
be considered putative hotspots of genetic recombination. Another application on practical ground is to look for small
subregions in the sequences that are related to a phenotypic variable. One example of this is the genome-wide association
studies (GWAS) of Single Nucleotide Polymorphisms (SNPs), where the interest is to find positions in the genome associated
with a given phenotypic trait. Traditionally, this task is performed by making a simultaneous hypotheses test on each
individual position or on small sub-windows of fixed length, as in the PLINK suite [6,20]. But considering all variables as
mutually independent does not translate the intrinsic relations present in genomic data and can result in weak or spurious
discoveries. This fact has led the community to develop methods that take into account the dependence between adjacent
or even non-adjacent variables; see, e.g., [16].

Many other authors have also considered the problem of inferring local dependencies in data, using a wide range of
probabilistic models. In a recent paper, Algama and Keith [1] present a detailed review about themost well-known sequence
segmentation techniques and the models assumed in each case. Their list contains sliding window analysis [22], hidden
Markov models [3,10], recursive segmentation algorithms [8,18] and multiple change-point analysis [9,21]. They also refer
to other methods for sequence segmentation and pattern identification based on least squares estimation [13] or onwavelet
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analysis [23]. We refer the reader to the work [1] where a brief explanation of these methods is presented, and also other
references for the problem of sequence segmentation are given.

Our main goal in this paper is to introduce a new approach for the problem of multiple sequence segmentation into
independent blocks. We are interested in inferring the maximal set of points of independence, when the number of such
points is unknown. To do this we propose a penalized maximum likelihood criterion to infer simultaneously the number of
points of independence and their positions, for n aligned random sequences of equal length m. We show how to compute
exactly this estimator by means of a dynamic programming algorithm and we prove its almost sure convergence to the true
set of points of independence when the sample size n increases. In cases where the size m of the sequences is large, we
propose a suboptimal but more efficient algorithm that also converges almost surely to the set of points of independence
when the sample size n increases. The main advantage of our procedure is that we do not need to assume a fixed number of
segments and the optimal number of points of independence can be learned from the data. Ourmethod can be used to reduce
drastically the dimensionality of the joint probability distributions from exponential to linear functions of the length of the
sequences, given by m, somehow sharing the same objectives of correspondence analysis, a principal component method
for nominal categorical data.

A related approach is considered by Gwadera et al. [12], who present a method to determine the optimal number of
segments in a sequence using a Variable Length Markov Chain (VLMC) model on each segment. They propose to use the
Bayesian Information Criterion (BIC) and a variant of the MinimumDescription Length (MDL) Principle to select the number
of segments for the given sequence. Their method consists in estimating change points on a unique stationary sequence
while ours looks for points of independence on non-stationary aligned sequences. In stark contrast to their approach, we do
not need to assume a specific probabilistic model on each segment and we can estimate a general multivariate distribution
on each segment. Moreover, Gwadera et al. [12] do not present a formal proof that their method succeeds to detect the
number and position of the change-points.

This paper is organized as follows. In Section 2 we present background material, show how to compute the estimators,
and state the main theoretical results. In Section 3 we report the results of simulations illustrating the performance of the
segmentation method, and in Section 4 we show a practical application on real data. In Section 5 we discuss the results and
in the Appendix we include the proofs of the theoretical results presented in Section 2.

2. Likelihood function and model selection

2.1. Notation and definitions

Let X = (X1, . . . , Xm) be a random vector taking values in A1 ×· · ·×Am, where Ai is a finite alphabet for all i ∈ {1, . . . ,m}.
The cardinal of the finite set Ai will be denoted by |Ai|. We say that j ∈ {1, . . . ,m − 1} is a point of independence for X if the
random vectors (X1, . . . , Xj) and (Xj+1, . . . , Xm) are independent.

Given two integers r ≤ s, denote by r : s the integer interval r, . . . , s. We say Ur:s ⊂ r : (s − 1) is a maximal set of points
of independence for the interval r : s if no v ∈ r : (s − 1) \ Ur:s is a point of independence for X. For each random vector X
and each interval r : s there is only one maximal set of points of independence; from now on this special set will be denoted
by U∗

r:s. In the special case r = 1, s = m we will simply write U∗.
Without loss of generality we will also suppose that the set Ur:s is ordered; in this case Ur:s = (u1, . . . , uk) with ui < uj if

i < j. From Ur:s it is possible to obtain the set of blocks of independent variables as the set B(Ur:s) = {I1, . . . , Ik+1} of integer
intervals given by I1 = r : u1, Ii = (ui−1 + 1) : ui for all i ∈ {2, . . . , k}, and Ik+1 = (uk + 1) : s.

Given an integer interval I = r : s denote by AI the set of finite strings on Ar × · · · × As with positive probability, viz.

AI
= {w ∈ Ar × · · · × As : Pr(w) > 0}.

Assume we observe an iid sample x(1), . . . , x(n) of X, denoted by x. Then, the likelihood function for the set U can be
written as

L(U; x) =

n∏
i=1

∏
I∈B(U)

Pr(Xj = x(i)j : j ∈ I). (1)

Denote by xr:s the iid sample x(1)r:s , . . . , x
(n)
r:s . Given a finite string ar:s ∈ Ar:s, define

N(ar:s) =

n∑
i=1

1{x(i)r:s = ar:s}.

Then L(U; x) can be rewritten as

L(U; x) =

∏
I∈B(U)

∏
aI∈AI

Pr(XI = aI )N(aI ). (2)

Denote by P̂r(aI ) the maximum likelihood estimators for the probabilities Pr(aI ), i.e., the values maximizing (2). It can be
proved that for any interval I and any aI ∈ AI , the estimator P̂r(aI ) is given, for all aI ∈ AI , by

P̂r(aI ) = N(aI )/n.
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