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Abstract

It has already been shown theoretically and numerically that infusing a little localization in the likelihood-based methods
for regression and for density estimation can actually improve the resulting estimators with respect to suitably defined
global risk measures. Thus various local likelihood methods have been suggested. In this paper, we demonstrate that
a similar effect can also be observed with respect to robust estimation procedures. Localized versions of robust density
estimation procedures perform better with respect to global risk measures based on minimization of Bregman divergence
measures.
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1. Introduction

Local likelihood estimation procedures were introduced in[13]. Their original application was in regression, espe-
cially in generalized regression models. The extension of the application in a density estimation context was proposedin
[6, 9]. Paper [6] summarizes the best features of the local likelihood density estimation approach as a truly semiparamet-
ric method. “The estimators run the gamut from a fully parametric fit to almost fully nonparametric with only a single
smoothing parameter to be chosen”.

This argument is also taken on board in [3]. They include an additional argument about the usefulnessof the local
likelihood approach in density estimation. Later, paper [12] further expanded the arguments of [3] with a more general
bandwidth analysis. In a nutshell, the above mentioned run of the estimators is controlled by the choice of the smoothing
parameterh, the bandwidth. With “smallh” one is closer to the fully non-parametric fit and with “largeh” one is closer
to the parametric fit. Depending on how close the true densityis to the parametric model, different terms in the expansion
of a suitably defined estimation risk may dominate.

In Section 2.1 of [3], the procedure is interpreted as the one that minimizes, ateach valuex of the argument, the
locally weighted Kullback–Leibler divergence between the“true” and the model density. We denote byF the cumulative
distribution function and assume that the densityf exists. As they say in their introduction, conceptually it is indeed rarely
the case that we are sure or are justified to assume that the underlying densityf belongs precisely to a parametric model
of the formg(x, θ) with θ ∈ Θ ⊂ Rp. It is more realistic and reasonable to assume thatf belongs to a tubular neighborhood
∪θ∈Θ{ f : D( f , gθ) ≤ ǫ}. HereD(·, ·) denotes some global measure of divergence (proximity) between f and the model.
One such reasonable measure could be the Kullback–Leibler divergence betweenf andgθ = g(·, θ), viz.

D( f , gθ) = Ef
[
ln { f (X)/g(X, θ)}] .

We are interested in cases whereǫ, although being very small, is not zero so that the true parametric model does not hold
globally (but may hold locally at each pointx with a parameterθ dependent on that point). In that case, it is a good idea
to infuse a local adaptation to the global likelihood by considering maximization of an expression of the form

n∑

i=1

K
(Xi − t

h

)
ln g(Xi, θ) (1)

based on dataX1, . . . ,Xn ∼ f with K(z) being some suitable nonnegative kernel function symmetric aroundz = 0 with
K(0) = 1 andh being a bandwidth controlling the extent of localization. In fact, further modifications of the simple
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