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a b s t r a c t

For any outlier detection procedure, a key concern is robustness with respect to possible
misclassification errors, masking (Type I) and swamping (Type II). Although parametric
model-based simulation results are informative, one also desires nonparametric masking
and robustness measures that are more broadly applicable. To this effect, notions of finite-
sample masking and swamping breakdown points formulated abstractly for outlyingness
functions in arbitrary data settings (Serfling and Wang, 2014) are introduced in the
present paper into the multivariate data setting. Formulas for the measures are derived
for three important affine invariant nonparametric multivariate outlyingness functions:
Mahalanobis distance, Mahalanobis spatial, and projection. Using the formulas, favorable
masking and swamping breakdown points, balanced equally, are seen for the Mahalanobis
distance outlyingness using minimum covariance determinant (MCD) location and scatter
estimators, and likewise for the projection outlyingness withmedian andMAD for univari-
ate location and scale. Also, Mahalanobis spatial outlyingness with MCD standardization is
competitive when swamping robustness is given higher priority than masking robustness.
A small simulation study with bivariate contaminated standard normal and contaminated
exponential models yields results consistent with the theoretical formulas. Some practical
recommendations are discussed.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Outlier and anomaly identification is a critical first step in exploratory data analysis. Such data pointsmay be nuisances to
be eliminated or ignored, or they might present targets of special interest. Here we consider the setting of data in Rd. While
visualization can help identify ‘‘outliers’’ in low dimension, for dimension d ≥ 3 one must rely on algorithmic approaches
that examine the geometric structure of the data and give the degree of outlyingness for any point. In this regard, a particular
outlier identification method is given as an outlyingness function defined on Rd.

For using and comparing such outlier identifiers, it is important to know their tendencies toward the two kinds of
misclassification error that can occur in the presence of outliers in the data: ‘‘masking’’ of an outlier as a nonoutlier (Type I
error), and ‘‘swamping’’ of a nonoutlier as an outlier (Type II error). One thuswishes to characterize for an outlier identifier its
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masking robustness and its swamping robustness. This can be explored by simulation studies based on particular hypothetical
parametric models for the data, but for generality of application it is important to have objective, quantitativemeasures that
are defined in a nonparametric fashion and thus are applicable very broadly. Such measures are provided by special notions
of finite-sample breakdown point: masking breakdown point (MBP) and swamping breakdown point (SBP), the minimum
fractions of points in the data set which, if replaced suitably, cause the given procedure to mask outliers or to swamp
nonoutliers, respectively. High MBP and SBP are desired. These robustness measures may be found theoretically, bypassing
extensive computation for simulation studies oriented to particular parametric models, although nevertheless some such
studies can provide added perspective. As interrelated criteria which trade off against each other, MBP and SBP should be
considered in concert for any procedure. Note that they provide specialized robustness criteria distinct from the robustness
properties of related location and scatter estimators that are possibly involved in the formulation of the given outlier
identification procedure.

Here MBP and SBP are derived for four leading outlyingness functions for multivariate data. Three are affine invariant:
Mahalanobis distance outlyingness, Mahalanobis spatial outlyingness, and projection outlyingness. The fourth, spatial outlying-
ness, is only orthogonally invariant but nevertheless is used in practice and also in definingMahalanobis spatial outlyingness.
In terms of their associated MBP and SBP results, we compare these procedures and make practical recommendations. Also,
a simulation study is carried out and yields empirical results consistent with the theoretical nonparametric MBPs and SBPs.

Let us now make this discussion precise. Our setting is nonparametric outlier identification in Rd, where the bulk of the
data consists of ‘‘regular’’ observations from a distribution F onRd that is unknown and not assumed to belong to a specified
parametric family. The central goal is to characterize the outlyingness of points x in Rd, relative to the distribution F , in
terms of an outlyingness function O(x, F ). Such a function yields a ‘‘center’’ or ‘‘median’’ (the minimum outlyingness point), a
designation of the ‘‘middle half’’ region (the 50% least outlying points), and regions for selected other outlyingness thresholds.
An outlyingness function corresponds to a global view of each point x, in comparison with the density function which
quantifies local probabilitymass at x. A sample versionO(x,Xn) analogously structures a data setXn = {X1, . . . ,Xn} assumed
to include ‘‘regular’’ observations from F and possibly contaminants from other sources.Nonparametric outlier identification
differs from parametric outlier identification, which is based on a specifiedmodel for the ‘‘regular’’ observations, for example
the normal, and which pursues goals such as parametric model-fitting after elimination of outliers, or robust regression
modeling in the normal model setting. Being based on a function and hence algorithmic in its formulation, a nonparametric
outlier identification procedure does not depend critically on graphical views or other subjective criteria and can be used in
online data analysis and statistical learning. Of course, outlyingness functions and hence also MBP and SBP can nevertheless
also be used in the setting of a contaminated parametric model.

In our nonparametric treatment, the sample ‘‘outliers’’ are defined as those points with O(x,Xn) above a specified
threshold λ. These include unknown numbers of ‘‘regular’’ observations from F and ‘‘contaminants’’ from other sources,
the latter typically lying in or toward the tail regions of the data. One goal is to detect the presence of contaminants and
sort them out from the regular points. However, since contaminants can seriously disrupt the performance of O(x,Xn) as a
surrogate for O(x, F ), we need O(x,Xn) to be robust in terms of MBP and SBP. Actually, for each of MBP and SBP, there are two
complementary versions, Type A and Type B, making altogether four relevant robustness measures to be considered.

Type A MBP measures the extent to which an extreme outlier of F can be masked in the sample as a nonoutlier at λ

outlyingness level, while Type B MBP measures how deeply (centrally) in the sample a γ level outlier of F can be masked as
a nonoutlier. On the other hand, Type A SBP measures how centrally a nonoutlier of F can be swamped as a λ level sample
outlier, while Type B SBP measures the most extreme sample λ threshold at which a γ level nonoutlier of F can be swamped
as a sample outlier. The Type A measures are based on a given choice of sample threshold λ and thus pair together, while
the Type B measures are based on a given choice of F threshold γ and likewise pair together.

While the concept of replacement breakdown point (RBP) for estimators is well-established, straightforward, and widely
applied, notions of MBP and SBP have proved more problematic to formulate. The seminal paper Davies and Gather [4]
treats versions of Type A MBP and Type B SBP for some outlier detection procedures for the univariate contaminated normal
model. In the setting of themultivariate contaminated normal model, Becker and Gather [1] treat Type AMBP forMahalanobis
distance outlyingness. Dang and Serfling [2] define Type A MBP in the nonparametric multivariate setting and evaluate it for
several outlyingness functions. Serfling and Wang [16] extend that treatment to develop a broad foundational framework
for coherent study of both Type A and Type B MBP and SBP for any outlyingness function in any data space. Application of
that framework in any particular data setting requires, however, specialized development relevant to that data setting. Its
application in the setting of univariate data, treating all four MBP and SBP measures for the scaled deviation and centered
rank outlyingness functions, is carried out by Wang and Serfling [19]. That work is related to the present treatment of all
four measures for selected multivariate outlyingness functions, as follows: scaled deviation outlyingness is a special case of
both Mahalanobis distance outlyingness and projection outlyingness, while centered rank outlyingness is a special case of
Mahalanobis spatial outlyingness.

The multivariate outlyingness functions under consideration are introduced in Section 2. Precise formulation of the
four MBP and SBP measures, along with key representations of them in terms of RBPs and the RBPs for relevant location
and spread or scatter estimators that will arise here, are provided in Section 3. Theoretical MBP and SBP results for the
selected outlyingness functions are presented and discussed in Section 4. Versions of Mahalanobis distance outlyingness
and projection outlyingness are seen to possess highly favorable MBP and SBP results, balancing equally well between
masking and swamping robustness. When only moderate Type A masking robustness can be tolerated, Mahalanobis spatial
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