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a b s t r a c t

It is well-known that the expected scaled maximum of non-negative random variables
with unit mean defines a stable tail dependence function associated with some extreme-
value copula. In the special case when these random variables are independent and identi-
cally distributed, min-stable multivariate exponential random vectors with the associated
survival extreme-value copulas are shown to arise as finite-dimensional margins of an
infinite exchangeable sequence in the sense of De Finetti’s Theorem. The associated latent
factor is a stochastic process which is strongly infinitely divisible with respect to time,
which induces a bijection from the set of distribution functions F of non-negative random
variables with finite mean to the set of Lévy measures ν on (0, ∞]. Since the Gumbel and
the Galambos copula are the most popular examples of this construction, the investigation
of this bijection contributes to a further understanding of their well-known analytical
similarities. Furthermore, a simulation algorithm based on the latent factor representation
is developed, if the support of F is bounded. Especially in large dimensions, this algorithm
is efficient because it makes use of the De Finetti structure.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A d-dimensional copula C is a distribution function on [0, 1]d with all one-dimensional margins being uniformly
distributed on [0, 1]. The importance of copulas in multivariate statistics stems from Sklar’s Theorem, see [36], which
states that for arbitrary one-dimensional distribution functions G1, . . . ,Gd the function C{G1(t1), . . . ,Gd(td)} (resp. C{1 −

G1(t1), . . . , 1 − Gd(td)}) defines a multivariate distribution function (resp. survival function) with the pre-defined one-
dimensional margins G1, . . . ,Gd. A copula C is of extreme-value kind if it satisfies

∀t∈(0,∞) ∀u1,...,ud∈[0,1] {C(u1, . . . , ud)}t = C(ut
1, . . . , u

t
d). (1)

This analytical property is usually interpreted in one of the following two ways.
On one hand, a random vector Y = (Y1, . . . , Yd) with survival function defined, for all t1, . . . , td ∈ [0, ∞), by

Pr(Y1 > t1, . . . , Yd > td) = C(e−λ1 t1 , . . . , e−λd td )

for λ1, . . . , λd ∈ (0, ∞) has a min-stable multivariate exponential distribution, which means that the scaled minimum
min(t1 X1, . . . , td Xd) is exponentially distributed for all t1, . . . , td ∈ (0, ∞); see [12]. If onewishes to focus on the dependence
structure, it is convenient to normalize the margins to λ1 = · · · = λd = 1, which we do henceforth.
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On the other hand, a random vector Z = (Z1, . . . , Zd) with distribution function

Pr(Z1 ≤ t1, . . . , Zd ≤ td) = C{G1(t1), . . . ,Gd(td)}, (2)

for univariate extreme-value distribution functions G1, . . . ,Gd, has amultivariate extreme-value distribution, meaning that it
arises as the limit of appropriately normalized componentwise maxima of independent and identically distributed random
vectors. If one wishes to focus on the dependence structure, it is convenient to normalize the margins to G1(t) = · · · =

Gd(t) = e−1/t for all t ∈ [0, ∞), which we do henceforth. In particular, the distributional relation between Y and Z after their
respective margin normalizations becomes

Y d
= 1/Z,

with ‘‘ d=’’ denoting equality in distribution.
For background on extreme-value copulas, the interested reader is referred to [18], and to [27] for general background

on copulas. Due to the defining property (1) of an extreme-value copula, its so-called stable tail dependence function, defined,
for all t1, . . . , td ∈ [0, ∞), by

ℓ(t1, . . . , td) = − ln{C(e−t1 , . . . , e−td )} (3)

is homogeneous of order 1, i.e., t×ℓ(t1, . . . , td) = ℓ(t×t1, . . . , t×td) for all t ∈ [0, ∞). This property gives rise to a canonical
integral representation for the stable tail dependence function, see [9,31], given by

ℓ(t1, . . . , td) = d E{max(t1 Q1, . . . , td Qd)}, (4)

where the randomvectorQ = (Q1, . . . ,Qd) takes values on the unit simplex Sd ≡ {q = (q1, . . . , qd) ∈ [0, 1]d : q1+· · ·+qd =

1}, and each component has mean 1/d. The finite measure d Pr(Q ∈ dq) on Sd is called the Pickands dependence measure
associated with C , a nomenclature which dates back to [28].

While the Pickands dependence measure stands in unique correspondence with an extreme-value copula, this does not
mean that the stable tail dependence function cannot have an alternative stochastic representation. In particular, ifX1, . . . , Xd
are arbitrary non-negative random variables with unit mean, Segers [35] showed that setting, for all t1, . . . , td ∈ [0, ∞),

ℓ(t1, . . . , td) ≡ E{max(t1 X1, . . . , td Xd)},

defines a proper stable tail dependence function of some extreme-value copula, which yields a useful construction device for
parametricmodels. In the present article, we study the associated extreme-value copulas in the special casewhen X1, . . . , Xd
are independent. Denoting their distribution functions by F = (F1, . . . , Fd), we denote, for all t1, . . . , td ∈ [0, ∞),

ℓF(t1, . . . , td) ≡ E{max(t1 X1, . . . , td Xd)}, (5)

and the extreme-value copula associated with ℓF via (3) is denoted by CF.
The main contribution of the present article is a detailed study of the De Finetti structure of CF in the special case when

F1 = · · · = Fd = F . The computations in [10] point out that the two most prominent representatives in this family of
extreme-value copulas are the Gumbel copula (F is a certain Fréchet distribution) and the Galambos copula (F is a certain
Weibull distribution). The Gumbel copula is named after Emil Gumbel [19,20], whereas the Galambos copula is named after
János Galambos [14]. Moreover, the recent articles [2,15] point out some further striking similarities between the Gumbel
and the Galambos extreme-value copulas.

The remainder of the article is organized as follows. Section 2 considers the case when F1 = · · · = Fd = F , in which case
we also write ℓF = ℓF and CF = CF . An infinite exchangeable sequence (Yk)k∈N of random variables is constructed such that
for each integer d ∈ N, the randomvector (Y1, . . . , Yd) has amin-stablemultivariate exponential distributionwith associated
stable tail dependence function ℓF . It follows that the conditional cumulative hazard process Ht ≡ − ln{Pr(Y1 > t |H)} is
strongly infinitely divisible with respect to time in the sense of [24], whereH denotes the tail-σ -field of (Yk)k∈N in the sense
of De Finetti’s Theorem; see [1,7,8]. The relation between the associated Lévy measure νF on (0, ∞] and the distribution
function F is explored.

Section 3 enhances the stochastic model to allow for the non-exchangeable case of arbitrary F1, . . . , Fd. In particular,
the De Finetti construction of the preceding section is slightly enhanced to derive a similar stochastic model for a min-
stable multivariate exponential random vector (Y1, . . . , Yd) with stable tail dependence function ℓF. It is based on d latent
frailty processes (H (1)

t )t≥0, . . . , (H
(d)
t )t≥0 which are dependent. Simulation algorithms for the new family are discussed. If

the supports of F1, . . . , Fd are all bounded, the aforementioned frailty model can be used for exact simulation. The latent
frailty processes on which this simulation algorithm is based, resemble shot-noise processes in this case. In the general
case of possibly unbounded supports of F1, . . . , Fd, an exact simulation strategy of [10], based on the Pickands dependence
measure, can be applied. In particular, the simulation ofQ in Eq. (4) is straightforward for the family of extreme-value copulas
CF. Section 4 concludes.
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