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a b s t r a c t

In this paper, underwater acoustic positioning is given by kernel principal component analysis (KPCA)
and maximum likelihood (ML). To reduce the impact of multi-path reflection on measured signals, we
utilize location fingerprinting to implement positioning. In order to check whether the proposed posi-
tioning scheme has the ability to tolerate multi-path reflections or not, experiments are conducted in a
confined towing tank with boundary walls. Different frequency components of a physical sound projector
are viewed as the virtual sound projectors. Thus the required hardware is greatly reduced. Our position-
ing scheme is divided into two stages, which are offline training and online testing. In the training stage,
underwater acoustic signals are collected at different pre-specified reference locations and then projected
to the KPCA space. In the testing stage, underwater acoustic signals are collected at an unknown location
and then projected to the KPCA space. Underwater positioning is given by probabilistic pattern recogni-
tion of maximum likelihood in the KPCA space. Finally, the Euclidean distance between the actual and
estimated positions are calculated and taken as the positioning error. The results show that underwater
positioning by KPCA based probabilistic approach is accurate and efficient.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays most underwater positioning systems adopt tradi-
tional geometric measurement methods such as time of arrival
(TOA) and direction-of-arrival (DOA) [1–5]. However, these meth-
ods require precise hardware to measure the arrival time differ-
ence or direction of acoustic signals during positioning. If signals
encounter multi-path reflections, measured results will be affected
by these reflected signals. In order to reduce the impact of reflected
signals on measured results, we utilize location fingerprinting
[6–8] and probabilistic pattern recognition to implement underwa-
ter acoustic positioning. The reason why it is named ‘‘location fin-
gerprinting’’ is that the positioning procedures are similar to those
of human fingerprint identification. By doing so, the underwater
acoustic positioning scheme do not need to achieve accurate direct
propagation signals. Studies [9–11] indicated that the accuracy of
positioning depends on the number of signals, i.e., more signals
lead to more accurate positioning. However, the increase of hard-
ware also leads to experimental difficulties. To reduce the required
hardware, we utilize different frequency components from one
physical sound projector to simulate multiple underwater sound
projectors. Each frequency interval from the sole physical sound

projector is considered as a virtual signal source transmitted by a
virtual underwater sound projector.

The study includes two stages, which are training (offline) and
testing (online). During the training stage, we utilize one fish finder
as the sole underwater physical sound projector and one hydro-
phone as the sole sound receiver. The fish finder transmits analog
AM (amplitude modulation) signals and these analog signals are
converted into the frequency domain through the FFT (Fast Fourier
Transform). Designated components of spectra are selected,
recorded and viewed as the virtual sound projectors. Note that
these designated components of spectra are time-varying due to
environmental fluctuations. To reduce the complexity of underwa-
ter acoustic signals and the impact of fluctuations, signals of virtual
sound projectors are projected to the KPCA [12–14] space. Each
projection is assumed to have a Gaussian distribution for probabi-
listic pattern recognition. The mean and standard deviation for fea-
tures in the KPCA space are calculated and recorded to constitute
the Gaussian distribution. In the testing stage, we utilize ML (max-
imum likelihood) [15–17] on databases of the training stage to
estimate coordinates of an unknown location where underwater
acoustic signals are received. Finally, the Euclidean distance be-
tween the actual and estimated positions is calculated and taken
as the error of underwater positioning.

In particular, experiments of this study are conducted in a tow-
ing tank at the National Cheng-Kung University in Tainan, Taiwan.
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Obviously, there exist multi-path reflections from boundary walls
of the tank. This arrangement will help us to check whether the
proposed positioning scheme has the ability to tolerate multi-path
reflections or not.

In Section 2, formulations of our underwater positioning
scheme are first given. Experiments and results are given in Section
3. Finally, the conclusion is given in Section 4.

2. Formulations

In our treatment, there is one wideband transmitter together
with one receiver. Different intervals of frequency components
transmitted by a wideband transmitter are collected to simulate
different sound projectors, i.e., ‘‘virtual’’ sound projectors. Signals
measured at selected reference locations are processed and re-
corded as the training database. Signals measured at an unknown
location are compared with the training database through location
fingerprinting, i.e., probabilistic pattern recognition. Therefore, an
estimate of the unknown location will be achieved.

The proposed positioning scheme is divided into two stages,
which are training (offline) and testing (online). We utilize one fish
finder as the sole underwater physical sound projector and one
hydrophone as the sole sound receiver. The fish finder transmits
analog AM (amplitude modulation) signals and these analog sig-
nals are converted into the frequency domain through the FFT (Fast
Fourier Transform). Designated components of spectra are se-
lected, recorded and viewed as the virtual sound projectors. As-
sume �x ¼ ½X1;X2; . . . ;XM �T contains the selected M spectral
components from the physical sound projector at a given position.
These M components of collected signals will be utilized for posi-
tioning. Note that the magnitude for each of the M spectral compo-
nents is time-varying due to environmental fluctuations. To reduce
the signal’s complexity and the impact of random fluctuations, sig-
nals of virtual sound projectors are projected to the KPCA [12–14]
space. Each projection is assumed to have a Gaussian distribution
for probabilistic pattern recognition. The mean and standard devi-
ation for features in the KPCA space are calculated and recorded to
constitute the Gaussian distribution. In positioning, we utilize ML
(maximum likelihood) [15–17] on existing databases to estimate
coordinates of the unknown location, where the underwater
acoustic signal occurs. Finally, the Euclidean distance between
the actual and estimated positions is calculated and taken as the
error of underwater positioning.

In the training stage, L planar reference locations (with coordi-
nates denoted as �r1; . . . ;�rl; . . . ;�rL) are first selected, as shown in
Fig. 1. At each reference location, n sequential time-sampling mea-
surements of underwater acoustic signals are collected for each
virtual acoustic source (i.e., one frequency interval of physical pro-
jector). Therefore, the measurements will constitute a signal ma-
trix with dimension M � N, where N is defined as N = n � L, as
shown in Fig. 2a.

The next step is to project the signal matrix of Fig. 2a to the
eigenspace of KPCA. Assume �x1; �x2; . . . ; �xN denote the N column vec-
tors of Fig. 2a. These N column vectors serve as the training data in
the original space and will be mapped to high-dimensional feature
space F through mapping function Uð�Þ, i.e.,

�xj ! Uð�xjÞ 2 F; j ¼ 1;2; . . . ;N: ð1Þ

Fig. 3 gives an example of (1). In the left part of Fig. 3, a nonlinear
elliptic curve separates two classes of data (i.e., circles and crosses)
in the original two-dimensional space. As the original data are suit-
ably mapped to a three-dimensional space, the projected data can
be easily separated by a simple plane (right part of Fig. 3). By using
this mapping function Uð�Þ, the training data is converted to be
(Uð�x1Þ;Uð�x2Þ; . . . ;Uð�xNÞ) . Initially, the mean of features in space F
is assumed to be zero, i.e.,

XN

j¼1

Uð�xjÞ ¼ 0 ð2Þ

The covariance matrix
P

in the feature space F is defined as

P
¼ 1

N
W WT ; ð3Þ

where W ¼ ðUð�x1Þ;Uð�x2Þ; . . . ;Uð�xNÞ) and T denotes the transposition.
Note that the above covariance matrix

P
cannot be calculated di-

rectly because the mapping function Uð�Þ is unknown. Instead, we
utilize kernel functions to solve the eigenvalue and eigenvector. If
symmetrical function K matches Mercer’s theorem [12], we could
use a kernel function to describe properties of data in high dimen-
sion space. Thus, we have an N � N kernel-function matrix K , which
is given as [12]

K ¼
< Uð�x1Þ;Uð�x1Þ > � � � < Uð�x1Þ;Uð�xNÞ >

..

. . .
. ..

.

< Uð�xNÞ;Uð�x1Þ > � � � < Uð�xNÞ;Uð�xNÞ >

2
664

3
775 ¼ WTW: ð4Þ

We utilize the above kernel function matrix K to calculate the posi-
tive eigenvalues (denoted as k1; k2; . . .) and their orthogonal eigen-
vectors (denoted as /1;/2; . . .). The eigenvalues are ranked as
k1 6 k2 6 . . .. By applying the singular value decomposition (SVD)
[16], we can easily prove that ki and W � /i (i = 1,2 ,. . .) are the eigen-
values and eigenvectors of covariance matrix

P
. In KPCA, we select

the top NKPCA positive eigenvalues together with their eigenvectors
to implement pattern recognition. For convenience, the eigenvec-
tors are normalized as

ui ¼
1ffiffiffiffi
ki
p W �ui; i ¼ 1;2; . . . ;NKPCA: ð5Þ

Therefore, an NKPCA dimensional eigenspace is spanned by eigenvec-
tors of (5). Let �x denote an original measurement, e.g., a column vec-
tor of matrix W. Its projection on KPCA space can be given as Q =
(q1, . . .,qi, . . .,qNKPCA

)T, where

qi ¼ uT
i � �x; i ¼ 1;2; . . . ;NKPCA: ð6Þ

From the above formulations, we found that one only need to know
the results of dot products < Uð�xiÞ;Uð�xjÞ >, where 1 6 i, j 6 N. De-
tails of the nonlinear function Uð�Þare not required. In this study,
we utilize polynomial kernel functions to define the nonlinear
transformation. The polynomial kernel for the (i,j)-element of K is
given as

jij ¼< Uð�xiÞ;Uð�xjÞ >¼ ð�xi � �xjÞd; 1 6 i; j 6 N; ð7Þ

where d is the polynomial degree.
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Fig. 1. The distribution of 3 � 28 = 84 planar reference locations in the towing tank.
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