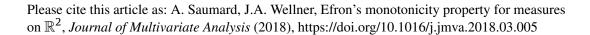
Accepted Manuscript

Efron's monotonicity property for measures on \mathbb{R}^2

Adrien Saumard, Jon A. Wellner


PII: S0047-259X(17)30428-1

DOI: https://doi.org/10.1016/j.jmva.2018.03.005

Reference: YJMVA 4337

To appear in: Journal of Multivariate Analysis

Received date: 17 July 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Efron's monotonicity property for measures on \mathbb{R}^2

Adrien Saumard^{a,1,*}, Jon A. Wellner^{b,2}

^aCentre de Recherche en Économie et Statistique, École Nationale de la Statistique et de l'Analyse de Information, Campus de Ker-Lann, rue Blaise Pascal, 35172 Bruz cedex, France ^bDepartment of Statistics, University of Washington, Seattle, WA 98195-4322, USA

Abstract

In this paper, we prove some kernel representations for the covariance of two functions taken on the same random variable and we deduce kernel representations for some functionals of a continuous one-dimensional measure. Then we apply these formulas to extend Efron's monotonicity property, given in Efron [14] and valid for independent log-concave measures, to the case of general measures on \mathbb{R}^2 . The new formulas are also used to derive some further quantitative estimates in Efron's monotonicity property.

Keywords: covariance identity, log-concave, functional inequality, monotonicity, measurement error

2010 MSC: 60E15, 62E10

1. Introduction: A monotonicity property

Efron [14] proved the following result.

Proposition 1. Let (X, Y) be a pair of real-valued random variables. Then the following statements are equivalent:

(i) For any $\Psi: \mathbb{R}^2 \to \mathbb{R}$, a function which is nondecreasing in each argument, the conditional expectation

$$I(s) = \mathbb{E}\{\Psi(X, Y) | X + Y = s\}$$
 (1)

is nondecreasing in s.

(ii) For any $(x, y) \in \mathbb{R}^2$, the conditional survival functions

$$S_X(x; s) = \Pr(X > x | X + Y = s)$$
 and $S_Y(y; s) = \Pr(Y > y | X + Y = s)$ (2)

are nondecreasing in s.

In this paper, condition (i) of Proposition 1 is referred to as Efron's "monotonicity property". Efron [14] used Proposition 1 to prove the monotonicity property for independent log-concave variables X and Y. In this paper, we extend the validity of Efron's monotonicity property to more general pairs (X, Y) on the plane; see Section 4. Our main result, Theorem 1, provides a condition on the joint density h of (X, Y), in terms of the second derivatives of $\varphi = -\ln h$ which implies (ii) of Proposition 1. In particular, in Section 4.3 we exhibit examples of random pairs satisfying the monotonicity property that are neither log-concave nor mutually independent. We also recover by different techniques Efron's monotonicity for independent log-concave variables in Section 4.2. Then we obtain quantitative lower-bounds for the derivative of Efron's I function in Section 5.

Our proofs rely on several key covariance identities which are stated in Section 3. These identities, originating in Hoeffding [21] (see also [22] for a translation of the German original), build on more recent results in the log-concave case due to Menz and Otto [35]. We conclude the paper in Section 6 by providing complete proofs of the key covariance identities stated in Section 3 together with some further examples and counterexamples.

^{*}Corresponding author

Email addresses: adrien.saumard@ensai.fr (Adrien Saumard), jaw@stat.washington.edu (Jon A. Wellner)

¹Supported by NI-AID grant 2R01 AI29168-04, and by a PIMS postdoctoral fellowship.

²Supported in part by NSF Grant DMS-1566514, NI-AID grant 2R01 AI291968-04.

Download English Version:

https://daneshyari.com/en/article/7546644

Download Persian Version:

https://daneshyari.com/article/7546644

Daneshyari.com