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1. Introduction

This article considers methods of nonparametric density estimation for spatially dependent data with wavelets. There
is an extensive literature on the density estimation problem for iid data or time series. Recently, inference techniques for
spatial data have gained importance because of their relevance in modern applications such as image analysis, forestry,
epidemiology or geophysics. See the monographs of [11] and [23] for a systematic introduction on spatial data and random
fields.

So far when working with random fields, the kernel method has been a popular tool both in regression and density
estimation; see, e.g., [3,8,9,27,28]. More recently, Dabo-Niang and Yao [13] extended the kernel method to functional
stationary random fields and estimated the spatial density with respect to a reference measure. Dabo-Niang et al. [12]
proposed a kernel method in spatial density estimation which also allows for spatial clustering. Amiri et al. [1] studied
asymptotic properties of a recursive version of the Parzen-Rozenblatt estimator.

While the kernel method is efficient if the density has unbounded support, it can sometimes suffer from boundary
issues for densities with compact support. Furthermore, the kernel method typically requires the density to satisfy certain
smoothness conditions like two-times continuous differentiability. In situations where the density function does not
meet these requirements, the wavelet method is an alternative which often performs relatively well because it adapts
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automatically to the regularity of the curve to be estimated. Wavelet estimators assume that the underlying curve belongs
to a function space with certain degrees of smoothness. These smoothness parameters can be more subtle than the
differentiability criterion from above and will be clarified later. The wavelet estimators do not depend on the smoothness
parameters; nevertheless, they behave as if the true curve is known in advance and attain the optimal rates of convergence.
This is in particular true for the hard thresholding estimator of Donoho et al. [19].

However, estimating the density of spatial data with wavelets has received little attention. Only the special case of time
series has been thoroughly investigated: the wavelet method for density and regression estimators for multivariate and
stationary time series is studied in [4,5,37,38]. In a recent article, Li [36] studied wavelet estimators for compactly supported
one-dimensional Besov densities on stationary and strongly mixing random fields.

In the present article, we continue with these considerations for d-dimensional densities and study the linear and the
hard thresholding estimator based on wavelets without assuming that they are isotropic. It is well-known that the hard
thresholding estimator performs better than its linear analogue for certain densities in the one-dimensional setting. We will
show a similar behavior for multivariate density functions.

The hard thresholding estimator has a linear basic component with respect to a coarse level j,. Additionally, nonlinear
details are added for higher levels j, <j < j; if their contribution is significant in the statistical sense. This implies that this
estimator can converge faster than the linear estimator in certain parameter settings.

The generalization to arbitrary dimensions is non-trivial, in particular because the definitions of the underlying Besov
space BZ,Q(R") have to be generalized to the d-dimensional case. For isotropic wavelets there already exist such generaliza-
tions; see, e.g., [30,39]. However, as we also allow for density estimators with nonisotropic wavelets, we need a more general
definition. This is one of the unique features of the present work. Moreover, we allow for density functions on R? which do
not necessarily have compact support.

We assume that Z = {Z(s) : s € ZN} is a random field with equal marginal laws on RY which admit a square integrable
density f with respect to the d-dimensional Lebesgue measure A¢. Then for an orthonormal basis {b, : u € N} of [*(1%),
we have the representation f = Zuem (f, by) by, where (-, -) is the inner product on the function space L*(A%). Since f is
a density, we have the fundamental relationship between an observed sample {Z(s) : s € I} withI C Z" and a coefficient
(f, by) from this representation, viz.

1
(b = E[bulZ(s) ]~ > buiZ(s).

sel

It is well-known that replacing the true coefficient with the empirical approximation yields a consistent density estimate
for an iid sample of one-dimensional data under certain conditions, see, e.g., [18,29]. In the particular case of wavelets,
Kerkyacharian and Picard [33] derived rates of convergence for the linear wavelet estimator.

In contrast to linear wavelet estimators, nonlinear wavelet estimators are particularly useful if the density curve features
high-frequency oscillations or exhibits an erratic behavior. Rates of convergence of the hard thresholded wavelet estimator
were studied in [19] and [25]. Since then the wavelet method for the density problem has been studied in various special
settings: Hall et al. [24], Cai [7] and Chicken and Cai [ 10] considered rates of convergence for wavelet block thresholding. Giné
and Nickl [22] gave several uniform limit theorems for wavelet density estimators for a compactly supported density and
iid sample data. Xue [44] studied wavelet-based density estimation under censorship. Giné and Madych [21] investigated
wavelet projection kernels in the density estimation problem. In this article, we continue the analysis for multivariate sample
data which are spatially dependent.

This manuscript is organized as follows. We give the fundamental definitions and summarize the main facts of Besov
spaces in d dimensions in Section 2. In Section 3 we study in detail the wavelet density estimators. We give criteria which
are sufficient for the consistency of the nonparametric estimators and establish rates of convergence. Section 4 is devoted
to numerical applications. We use an algorithm proposed by Kaiser et al. [31] for the simulation of the random field and
estimate its marginal density with the linear and the hard thresholded wavelet estimator. Section 5 contains the proofs of
the results from Section 3. Appendix A contains useful inequalities for dependent sums. As the wavelet estimators are a
priori not necessarily a density, we consider in Appendix B the question under which circumstances a normalized estimator
is consistent.

2. Notation and definitions
This section is divided in four parts. First, we introduce the concepts for multidimensional wavelets. Second, we define

the multidimensional Besov spaces. Third, we explain the data generating process. Finally, we define the wavelet density
estimator. In the following, we write L?(19) for L*(R¢, B(RY), A9), where A? is the d-dimensional Lebesgue measure and we

write
1/p
) = ( / P dxd)
Rd

for the IP-norm of a function f on R%.
We begin with well-known results on wavelets in d dimensions; see, e.g., the monograph of [2].



Download English Version:

https://daneshyari.com/en/article/7546683

Download Persian Version:

https://daneshyari.com/article/7546683

Daneshyari.com


https://daneshyari.com/en/article/7546683
https://daneshyari.com/article/7546683
https://daneshyari.com

