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a b s t r a c t

This paper characterizes theminimax linear estimator of the value of an unknown function
at a boundary point of its domain in a Gaussian white noise model under the restriction
that the first-order derivative of the unknown function is Lipschitz continuous. The result
is then applied to construct theminimax optimal estimator for the regression discontinuity
designmodel, where the parameter of interest involves function values at boundary points.
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1. Introduction

This paper studies the problem of finding the minimax linear estimator of the value of an unknown function f at a
boundary point when f is known to lie in a particular smoothness class F of functions. Following Zhao [20], this paper
takes F to be the space of continuously differentiable functions whose first-order derivatives are Lipschitz continuous with
constant C , which is also known as the Hölder class of the second order. The following Gaussian regression model is also
considered, in which a stochastic process {Y (t) : t ∈ R+ ≡ [0,∞)} is observed and assumed to be generated according to

dY (t) = f (t) dt + σ dW (t) , (1)

where W represents standard Brownian motion. The parameter of interest considered here is Lf = f (0), i.e., the value of f
at the boundary point of its domain, and we seek to obtain a linear estimator L̂ for f (0) that minimizes the worst-case mean
squared error, i.e., L̂ solves

inf
L̂∈L

sup
f∈F

Ef {(L̂ − Lf )2}.

As shown byDonoho [5], the problem ofminimax linear estimation is essentially equivalent to solving themodulus problem,
i.e., finding the least favorable function f ∗. Following Zhao [20], it can be shown that this is also equivalent to minimizing
∥f ∥2, where ∥ · ∥ denotes the L2 norm, subject to an ‘‘initial condition’’ f (0) = b in F .

In Zhao [20], the domain of the unknown function f is taken to be R and the parameter of interest f (0) is the value of f
at an interior point. As a result, by the strict convexity of ∥ · ∥

2, the solution f ∗ must be symmetric about 0, i.e., f ∗ must be an
even function. This implies that (f ∗)′ (0) = 0, imposing an initial condition on (f ∗)′ in addition to f ∗ (0) = b. Zhao [20] then
provides a characterization of the solution f ∗.

The key difference between this paper and Zhao’s lies in the fact that here, f (0) is the value of f at a boundary point of
the domain of f . As a result, the convexity of ∥ · ∥

2 no longer imposes any initial condition on the first order derivative
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of f , and the least favorable function f ∗ requires the optimal specification of (f ∗)′ (0). This paper provides a complete
characterization of the solution f ∗, which has two main features. First, the Lipschitz continuity constraint on (f ∗)′ is binding
on R+, i.e., |(f ∗)′′| = C on R+ (almost everywhere). Second, assuming f ∗ (0) > 0 without loss of generality, the optimal
initial condition on the first-order derivative satisfies (f ∗)′ (0) < 0.

This paper complements Zhao [20] and other research on the solution to the minimax estimation problem under various
settings, such as [4,6,7,10,11,13–17,19]. See Armstrong and Kolesár [1, 2] for a review and the construction of honest
confidence intervals for nonparametric regression models based on minimax optimal kernels.

A particular application of the present problem is the estimation of the regression-discontinuity parameter in the
regression-discontinuity (RD) design model which, originally introduced by Thistlethwaite and Campbell [18], arises
frequently in economic scenarios. Imbens and Lemieux [9] provide a review of various settings of the RD design model
and a practical guide for estimation based on the work of Cheng et al. [4], who show theminimax optimality of their method
in the Taylor class. As noted in [15,20], often times the Hölder class is a more natural restriction to make than the Taylor
class because the former imposes a uniform bound on a derivative of a certain order globally, while latter only bounds the
derivative locally at a point. The global restriction allowed by the Hölder class, when empirically reasonable, helps improve
the minimax optimality of estimation.

Consider the Gaussian nonparametric regression model

Ẏt = f (t)+ σẆt , Wt ∼ BM (1)

where f is a function defined on R. Suppose that there is a regression discontinuity at 0, i.e.,

Lf = lim
x↘0

f (x)− lim
x↗0

f (x) ̸= 0.

Wemight be interested in estimating the RD parameter Lf : if a ‘‘treatment’’ is assigned whenever x ≥ 0, then the parameter
of interest Lf captures the ‘‘treatment effect’’ at x = 0. Define f+, f− : R+ → R by

f+ (x) =

{
f (x) if x > 0,
lim
y↘0

f (y) if x = 0, f− (x) =

{
f (−x) if x > 0,
lim
y↘0

f (−y) if x = 0.

The RD parameter Lf = f+ (0) − f− (0) is then the difference between f+ and f− at the boundary point of their domain R+.
In Section 3, we show how the main result of this paper can be applied to construct the minimax linear estimator for the RD
parameter.

The paper is organized as follows. Section 2 presents the model and the main result. Section 3 considers in more detail
the application to the RD design model. Section 4 concludes the paper. The Appendix contains all proofs.

2. Model and main result

Following Donoho [5], consider the general model

y = Kf + ϵ, (2)

where y, ϵ ∈ Y , a Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥, and ϵ is standard Gaussian with respect to ⟨·, ·⟩,
i.e., for all g ∈ Y , ⟨g, ϵ⟩ ∼ N (0, ∥g∥

2σ 2) with σ 2 > 0 known. Here, f ∈ F is an unknown real-valued function, where F is
the set of admissible functions to which we restrict our attention, and K : F → Y is a known linear operator on F . Suppose
L : F → R is a given functional and that we are interested in estimating the parameter Lf .

Following Zhao [20], this paper considers the special case of the Gaussian regression model, in which we observe
{Y (t) : t ∈ [0,∞)} as defined in Eq. (1) with σ a known parameter, and f an unknown function in F . Equivalently, we
specialize the general model (2) by taking y = Ẏ , Kf = f , ϵ = σẆ and Y = L2 (R+) with the standard inner product
defined, for all g, h ∈ L2 (R+), by

⟨g, h⟩ =

∫
∞

0
g (t) h (t) dt.

By the standard Gaussianity of ϵ, we have, for all g ∈ Y ,

⟨g, ϵ⟩ = σ

∫
∞

0
g (t) dW (t) ∼ N (0, σ 2

∥g∥
2).

Moreover, we restrict f to be continuously differentiable and f ′ to be Lipschitz continuous with parameter C , i.e.,

F = FH (2, C) = {g ∈ L2 (R+) ∩ C1 (R+) : ∀t,s∈R+
|g ′ (t)− g ′ (s)| ≤ C |t − s|},

where FH (γ , C), as defined in [12], denotes the Hölder class with order γ > 0 and constant C > 0, viz.

FH (γ , C) = {g ∈ L2 (R+) ∩ C⌊γ ⌋ (R+) : ∀t,s∈R+
|g (⌊γ ⌋) (t)− g (⌊γ ⌋) (s)| ≤ C |t − s|γ−⌊γ ⌋

}

with ⌊γ ⌋ := max {k ∈ N : k < γ }.
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