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a b s t r a c t

Motivated by recentworks studying the longitudinal diffusion tensor imaging (DTI) studies,
we develop a novel procedure to construct simultaneous confidence bands for mean
functions of repeatedly observed functional data. A fully nonparametric method is pro-
posed to estimate the mean function and variance–covariance function of the repeated
trajectories via polynomial spline smoothing. The proposed confidence bands are shown
to be asymptotically correct by taking into account the correlation of trajectories within
subjects. The procedure is also extended to the two-sample case in which we focus on
comparing the mean functions from two populations of functional data. We show the
finite-sample properties of the proposed confidence bands by simulation studies, and
compare the performance of our approach with the ‘‘naive’’ method that assumes the
independencewithin the repeatedly observed trajectories. The proposedmethod is applied
to the DTI study.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Withmodern technological progress inmeasuring devices, sophisticated data are noweasy to collect. These data are often
sets of functions such as curves, images or shapes, whose high-dimensional and correlated features impose tremendous
challenges on conventional statistical studies. Emerging as a promising field, functional data analysis (FDA), which deals
with the analysis of curves, has recently undergone intense development. The interested reader is referred to Ramsay and
Silverman [16] for a general introduction of FDA.

In thiswork,we focus on situationswhere curves are repeatedly recorded for each subject, e.g., mortality data [6] inwhich
age-specific lifetables are collected over years for various countries, and electroencephalography (EEG) data [9] observed for
patients at each visit. Such dependent types of curves or images now commonly arise in diverse fields including climatology,
demography, economics, epidemiology, and finance.

Our work is motivated by a longitudinal neuroimaging study containing repeated functional measurements derived from
diffusion tensor imaging (DTI); for a description, see [11,12]. DTI is a magnetic resonance imaging technique which provides
different measures of water diffusivity along brain white matter tracts; its use is instrumental, especially in diseases that
affect the brain white matter tissue such as multiple-sclerosis (MS); see, e.g., [1]. In this study, DTI brain scans are recorded
for many multiple-sclerosis (MS) patients to assess the effect of neurodegeneration on disability. At each visit, fractional
anisotropy (FA) was determined via DTI along the corpus callosum (CCA). One objective here is to better understand the
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demyelination process via its FA proxy and investigate possible differences therein between female andmale patients. Point-
wise confidence intervals via estimation ±2 point-wise standard errors are provided in [17]. It is unclear, however, what is
the performance of global inference on the true underlying mean profile.

In this paper, we develop simultaneous inference for the mean of repeated functional data. Our approach can handle the
within-subject correlation and provide global inference, which are the key advantages of our approach over available FDA
methods. There have been some recent attempts to study such repeated functional data in various settings. For example,
the importance of models for dependent functional data has been recognized in [7,9], in which the emphasis has been on a
general hierarchical model. Chen andMüller [6] proposed a flexible longitudinally observed functional model and provided
consistency results and asymptotic convergence rates for the estimated model components. Zhu et al. [23] established the
uniform convergence rate and confidence band for each estimated individual effect curve in multivariate varying coefficient
models.

Simultaneous confidence bands (SCBs) are an important tool to address the variability in the unknown function and to
develop global test statistics for general hypothesis testing problems. In Wang et al. [19,20], smooth SCBs are developed
for the cumulative distribution functions. Gu and Yang [14] constructed SCBs for the link function in a single-index model
based on the oracally efficient kernel estimator. It is of particular interest in FDA to construct SCBs for mean functions.
For example, Bunea et al. [2] proposed an asymptotically conservative confidence set for the mean function of Gaussian
functional data. Song et al. [18] proposed an asymptotically correct SCBs for dense functional data using local linear
smoothing. Recently, polynomial splines have found successful applications in SCB construction. Ma et al. [15] suggested
spline SCBs for mean functions of sparse functional data based on polynomial spline smoothing. Gu et al. [13] investigated
a varying coefficient regression model for sparse functional data and proposed simultaneous confidence corridors for the
coefficient functions. Cao et al. [4,5] provided SCBs for mean and derivative functions of dense functional data, respectively.

In this paper, we derive SCBs for mean functions when curves are repeatedly recorded for each subject. Existing
methodologies for constructing SCBs in FDA often assume the independence of trajectories within each subject. Thus,
the within-subject effect is not reflected by the traditional covariance functions of the mean curve. We are unaware of
any methodology that provides exact SCBs for mean curves of repeatedly observed functional data. In this work, we use
polynomial splines to approximate the mean and covariance functions in the construction of the SCBs. We show that the
proposed spline SCBs are asymptotically correct and semiparametrically efficient in the sense that they are asymptotically
the same as if all random trajectories were observed entirely and without errors as in [5]. We further consider two-sample
inference for dependent functional data and extend our SCB construction procedure to a two-sample problem to testwhether
the mean functions from two groups are different.

The dependence within the repeatedly observed curves adds extra difficulty for model implementation, e.g., the
estimation of within-subjects correlation. Misspecification of the correlation structure may lead to some efficiency loss. To
tackle this issue, it is desirable to make the structure as model-free as it can be, and nonparametric modeling is particularly
useful in this sense. In this paper we propose to estimate the variance–covariance functions nonparametrically. Our Monte
Carlo results show that the proposed bands have much more accurate coverage rates of the true function compared to the
‘‘naive’’ method that ignores the within-subject dependence.

The paper is organized as follows. Section 2 states the model and introduces the estimates of mean functions for
repeated functional data. Section 3.1 describes the asymptotic distribution of the estimators in the framework of allowing
unknown dependence of the trajectorieswithin subjects. Using this asymptotic result, we construct SCBs formean functions.
Section 3.2 develops the SCBs to study the difference of mean functions from two populations. Section 4 discusses how to
estimate the components in the proposed bands. A simulation study is presented in Section 5. Section 6 contains applications
of our method to a diffusion tensor imaging data. Section 7 gives the concluding remarks. Further insights into the error
structure of spline estimators and technical proofs are collected in the Appendix.

2. The model and estimates

2.1. Modeling repeated functional measurements

We consider data {Xij(s) : s ∈ X }, i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}, where Xij is a repeated random curve on the compact
interval X , i is the subject index, and j is the repeated trajectory index for the ith subject. Assume that for all j ∈ {1, . . . ,mi},
Xij are iid copies of the L2 process Xj defined on [0, 1], with mean function defined, for all s ∈ [0, 1], by µ(s) = E{Xij(s)}.

For the ith subject one has the Karhunen–Loève representation of the process of Xij(s), i.e., Xij(s) = µ(s) +
∑

∞

k=1ξijkφjk(s),
where the random coefficients ξijks are referred to as the (jk)th functional principal component (FPC) scores of the ith subject.
For each fixed (i, j), the ξijks are uncorrelated with mean 0 and variance 1. For notational convenience, let φjk =

√
λjk ψjk;

then λjk andψjk are the eigenvalues and eigenfunctions of the covariance operator with kernel Gjj (s, t) = cov{X1j(s), X1j(t)},
respectively. Although the sequences {λjk}

mi,∞
j,k=1 , {φjk}

mi,∞
j,k=1 and the random coefficients ξijks exist; however, they are unknown

or unobservable.
Let Yi(s) = (Yi1(s), Yi2(s), . . . , Yimi (s))

⊤ for all i ∈ {1, . . . , n}, and assume Yij(s) = Xij(s) + εij(s), where εij(s) are mean
zero measurement errors. Suppose Xij(s) = µ(s) + ηij(s), where ηij(s) characterizes individual curve variations from µ(s).
Denote εi(s) = (εi1(s), . . . , εimi (s))

⊤ and ηi(s) = (ηi1(s), . . . , ηimi (s))
⊤. Suppose εi(s) and ηi(s) are mutually independent.

Moreover, assume that ηi(s) and εi(s) are iid copies of stochastic processes with mean vector 0 and covariance functions
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