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a b s t r a c t

Discrete graphical models are an essential tool in the identification of the relationship
between variables in complex high-dimensional problems.When the number of variables p
is large, computing the maximum likelihood estimate (henceforth abbreviated MLE) of the
parameter is difficult. A popular approach is to estimate the composite MLE (abbreviated
MCLE) rather than the MLE, i.e., the value of the parameter that maximizes the product of
local conditional or local marginal likelihoods, centered around each vertex v of the graph
underlying themodel. The purpose of this paper is to first show that, when all the neighbors
of v are linked to other nodes in the graph, the estimates obtained through local conditional
and marginal likelihoods are identical. Thus the two MCLE are usually very close. Second,
we study the asymptotic properties of the composite MLE obtained by averaging of the
estimates from the local conditional likelihoods: this is done under the double asymptotic
regime when both p and N go to infinity.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Discrete graphical models are an essential tool in the analysis of complex high-dimensional categorical data. For these
models, in this paper, we study properties of the maximum composite likelihood estimate of the parameter, which is
commonly used when, due to a large number of variables, the maximum likelihood estimate is impossible to compute.

Let V = {1, . . . , p} be a finite index set. Let G = (V , E) be an undirected graph, where E is the set of undirected edges in
V ×V . Then the distribution of X = (Xv, v ∈ V ) is said to beMarkov with respect to G if Xv is independent of Xu given XV\{u,v}

whenever the edge (v, u) is not in E. The set of distributions Markov with respect to a given graph G is called a graphical
model. When the variables Xv take values in a finite set Iv, v ∈ V , the graphical model is said to be discrete. Thesemodels are
used extensively to represent interactions between individuals in physical or human networks. Each data point is classified
according to its values of Xv = iv, iv ∈ Iv, v ∈ V and the data are thus gathered in a p-dimensional contingency table with
cells i = (iv, v ∈ V ) and cell counts n(i), i ∈ I =

∏
v∈V Iv. As we shall recall in Section 2, the density of the cell counts can be

written under a natural exponential family form as

f (t; θ ) = exp{⟨θ, t⟩ − Nk(θ )}, (1)

where t is a vector of marginal cell counts, ⟨θ, t⟩ denotes the inner product of t = t(x) and θ , the canonical loglinear
parameter.
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For a given data set, the first task is to learn the underlying graph and once this is done, the second task is to estimate the
parameter θ of the model. When p is large, to obtain the maximum likelihood estimate (abbreviated MLE) of θ through
a simple maximization of the likelihood function is impossible because of the dimension of the parameter θ and the
complexity of the cumulant generating function k(θ ) in (1). Approximate techniques such as variational methods [7,16]
or MCMC techniques [5] have been developed in recent years. More recently still, work has been done on a third type
of approximate technique based on the maximization of composite likelihoods [1,10]. For a given data set x(1), . . . , x(N),
a composite likelihood is typically the product of local conditional likelihoods, coming from the local conditional probability
of Xv given XNv , v ∈ V , whereNv indicates the set of neighbors of v in G. The parameter of the local conditional distribution
at v is a sub-vector of θ which, in the sequel, we will denote θv,PS .

Further in the direction of composite likelihood, recent research has focused on studying each local conditional model
and combining all the local results to yield a global estimate of either the underlying structure G or the parameter θ . For
model selection when p is large, Ravikumar et al. [14], for example, introduced a local approach to discrete graphical model
selection by looking at the regularized local conditional likelihood of Xv given XV\{v}, i.e., due to the Markov properties of
the model, given XNv . For parameter estimation, with p large and G given, the local approach has been used for Gaussian
graphical models byWiesel and Hero [18] and for discrete models by Liu and Ihler [11]. These two papers used, respectively,
the ADDM optimization technique and the so-called linear consensus or maximum consensus to obtain a global estimate of
the parameter from the estimates of the parameters of the local conditional distributions. Moreover, Liu and Ihler [11] study
the asymptotic properties, for p fixed and N going to infinity, of the maximum composite likelihood estimate thus obtained
by combining estimates of θv,PS, v ∈ V .

For the estimation of the precision matrix in graphical Gaussian models, Meng et al. [12,13] depart from the ideas of the
twopapers justmentioned, in twoways. First, they donot consider local conditionalmodels but rather localmarginalmodels.
Second they do not look only at ‘‘one-hop’’ marginal models, i.e., models built on v and its neighbors Nv but they consider
‘‘two-hop’’ local marginal models, i.e., marginal models with vertex set comprising v, its neighbors and the neighbors of the
neighbors. With the two-hop local marginal likelihoods, they show with examples that they achieve such accuracy that, to
obtain the overall estimate of the parameter, they need not use a method more sophisticated than simple averaging of the
various local marginal likelihood estimates.

In this paper, we are concernedwith themaximum composite likelihood estimation of θ and our purpose is twofold. First,
we extend the methodology of [13] to discrete graphical models: as we will show in Lemmas 1 and 2, the marginal models
are not convex in the parameter θ of the global model. So, in a way parallel to [13], in Section 3.3, we consider relaxed local
marginal models (rather than regular marginal ones). We obtain estimates of θ by averaging estimates from local marginal
models and compare them to the estimate obtained from local conditional models.

In Theorem 1, for the one-hop neighborhood, we show that, under the condition that all the neighbors of v are linked to
vertices not inNv , the v-local estimate of the parameters of interest obtained from local conditional or marginal likelihoods
is identical. We express this condition by saying that Nv = Bv where Bv , called the buffer set, is the set of vertices in
Nv which are linked to vertices outside the neighborhood. A similar statement holds for the two-hop neighborhoods. In
Section 3, we compare the MCLE obtained through local conditional and marginal likelihoods for three graphical models
with 100 variables: one graph is random, the other is a hub graph and the third is a 10 × 10 grid. Whether the condition
Nv = Bv is satisfied for v ∈ V depends on the type of graph. Computing the mean square error of the MCLEs, we see that,
for one-hop neighborhoods, the slightly improved accuracy obtained through local marginal models is counterbalanced
by a significant increase in computational complexity. And this improvement is only observed for the random graph. For
two-hop neighborhoods, the mean square errors for the MCLE obtained from local conditional and marginal likelihoods are
indistinguishable. Moreover, due to computational complexity, in the case of the hub graph, it was not possible to compute
the MCLE based on marginal likelihoods.

We note that the subset Bv plays also an important role in Lemmas 1 and 2 which give us the relationship between the
parameters of the local marginal models and the parameters of the global model: marginal parameters indexed by subsets
not contained in Bv are equal to the global parameters indexed by the same subsets.

In Section 4, we look at the asymptotic properties of the MCLE of θ . We do so under the classical and double asymptotic
regimes. Our main result, Theorem 3, states that, when both p and N go to infinity, under certain conditions, Conditions A
and B, on the Fisher information matrices of the local conditional models, for N/ln p large enough, our estimate is close to
the true value of the parameter with high probability. Our result under the classical regime, Theorem 2 where p is fixed,
coincides with Theorem 4.1 of [11] and is given here for the sake of completeness.

To end this section, we comment on the existence of themaximum composite likelihood estimate. First when computing
the estimates from the local conditional likelihoods, we need tomake sure that they exist, i.e., that there exist finite estimates
of θv,PS that maximize the local conditional likelihood. If they do not exist, our maximization software may return values
that are erroneous. It may happen also that the global maximum likelihood estimate of θ does not exist and yet the local
estimates of θv,PS exist: we can then obtain a maximum composite likelihood estimate of the parameter. We expand on
these points in Lemma 3. Techniques to identify the existence of the global maximum likelihood estimate of θ have been
developed in [3] and [17]. In the present paper, we will assume that all local estimates exist.
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