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a b s t r a c t

The goal of this paper is to address the issue of nonlinear regression with outliers, possibly
in high dimension, without specifying the form of the link function and under a parametric
approach. Nonlinearity is handled via an underlying mixture of affine regressions. Each
regression is encoded in a joint multivariate Student distribution on the responses and
covariates. This jointmodeling allows theuse of an inverse regression strategy tohandle the
high dimensionality of the data, while the heavy tail of the Student distribution limits the
contamination by outlying data. The possibility to add a number of latent variables similar
to factors to the model further reduces its sensitivity to noise or model misspecification.
The mixture model setting has the advantage of providing a natural inference procedure
using an EM algorithm. The tractability and flexibility of the algorithm are illustrated
in simulations and real high-dimensional data with good performance that compares
favorably with other existing methods.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A large amount of applications deal with relating explanatory variables (or covariates) to response variables through a
regression-type model. In many circumstances, assuming a linear regression model is inadequate andmore sensible models
are likely to be nonlinear. Other complexity sources include the necessity to take into account a large number of covariates
and the possible presence of outliers or influential observations in the data. Estimating a function defined over a large number
of covariates is generally difficult because standard regressionmethods have to estimate a large number of parameters. Then,
even in moderate dimension, outliers can result in misleading values for these parameters and predictions may no longer
be reliable. In this work, we address these three complication sources by proposing a tractable model that is able to perform
nonlinear regression from a high-dimensional space while being robust to outlying data.

A natural approach for modeling nonlinear mappings is to approximate the target relationship by a mixture of linear
regression models. Mixture models and paradoxically also the so-called mixture of regression models [10,17,20] are mostly
used to handle clustering issues and few papers refer to mixture models for actual regression and prediction purposes.
Conventional mixtures of regressions are used to add covariates information to clustering models. For high-dimensional
data, some penalized approaches of mixtures of regressions have been proposed such as the Lasso regularization [12,36]
but these methods are not designed for prediction and do not deal with outliers. For moderate dimensions, more robust
mixtures of regressions have been proposed using Student t distributions [33] possibly combined with trimming [44].
However, in general, conventional mixtures of regressions are inadequate for regression because they assume assignment
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independence [21]. This means that the assignments to each of the regression components are independent of the covariate
values. In contrast, in the method we propose, the covariate value is expected to be related to the membership to one of the
linear regressions. Each linear regression is mostly active in a specific region of the covariate space.

When extended with assignment dependence, models in the family of mixtures of regressions are more likely to be
suitable for regression application. This is the case of the so-called Gaussian Locally Linear Mapping (GLLiM) model [11] that
assumes Gaussian noise models and is in its unconstrained version equivalent to a joint Gaussian mixture model (GMM) on
both responses and covariates. GLLiM includes a number of other models in the literature. It may be viewed as an affine
instance of mixture of experts as formulated in [43] or as a Gaussian cluster-weighted model (CWM) [19] except that
the response variable can be multivariate in GLLiM while only scalar in CW models. There have been a number of useful
extensions of CW models. The CWt model of [22] deals with non Gaussian distributions and uses Student t distributions
for an increased robustness to outliers. The work of [37] uses a factor analyzers approach (CWFA) to deal with CW models
when the number of covariates is large. The idea is to overcome the high dimensionality issue by imposing constraints on
the covariance matrix of the high-dimensional variable. Incrementally, [38] combines then the Student and Factor analyzers
extensions in a so-called CWtFAmodel. As an alternative to heavy-tailed distributions, some approaches propose to dealwith
outliers by removing them from the estimation using trimming. Introducing trimming into CWMhas then been investigated
in [18] but for a small number of covariates and a small number of mixture components. All these CW variants have been
designed for clustering and have not been assessed in terms of regression performance.

In contrast, we consider an approach dedicated to regression. To handle the high dimensionality, we adopt an inverse
regression strategy in the spirit of GLLiM which consists of exchanging the roles of responses and covariates. Doing so, we
bypass the difficulty of high-to-low regression by considering the problem the other way around, i.e., low-to-high. We build
on the work in [11] by considering mixtures of Student distributions that are able to better handle outliers. As an advantage
over the CWtFA approach, our model can deal with response variables of dimension greater than 1. In addition, CWtFA
involves the computation of a large empirical covariance matrix of the size of the higher dimension. Furthermore, under
our approach, the observed response variables can be augmented with unobserved latent responses. This is interesting for
solving regression problems in the presence of data corrupted by irrelevant information for the problem at hand. It has
the potential of being well suited in many application scenarios, namely whenever the response variable is only partially
observed, because it is neither available, nor observed with appropriate sensors. Moreover, used in combination with the
inverse regression trick, the augmentation of the response variables with latent variables acts as a factor analyzer modeling
for the noise covariance matrix in the forward regression model. The difference between our approach and CWtFA is further
illustrated in Appendix B.

The present paper is organized as follows. The proposed model is presented in Section 2 under the acronym SLLiM for
Student Locally LinearMapping. Its use for prediction is also specified in the same section. Section 3 presents an EMalgorithm
for the estimation of the model parameters with technical details postponed in Appendix A. Proposals for selecting the
number of components and the number of latent responses are described in Section 4. The SLLiM model properties and
performance are then illustrated in simulations in Section 5 and real high-dimensional data in Section 6. Section 7 ends the
paper with a discussion and some perspectives.

2. Robust mixture of linear regressions in high dimension

We consider the following regression problem. For n ∈ {1, . . . ,N}, yn ∈ RL stands for a vector of response variables
with dimension L and xn ∈ RD stands for a vector of explanatory variables or covariates with dimension D. These vectors
are assumed to be independent realizations of two random variables Y and X. It is supposed that L ≪ D and the number of
observations N can be smaller than D. The objective is to estimate the regression function g that we will also call forward
regression that maps a set of covariates x to the response variable space, g(x) = E(Y | X = x).
Inverse regression strategy.When the numberD of covariates is large, typicallymore than hundreds, estimating g is difficult
because it relies on the exploration of a large dimensional space. A natural approach is therefore to, prior to regression, reduce
the dimension of the covariates x1, . . . , xN and this preferably by taking into account the responses y1, . . . , yN . Methods
like partial least squares (PLS), sliced inverse regression (SIR) and principal component based methods [1,9,27,35,42]
follow this approach, in the category of semi- or non-parametric approaches. When considering parametric models, the
issue is usually coming from the necessity to deal with large covariance matrices. A common solution is then to consider
parsimonious modeling of these matrices either by making an oversimplistic independence assumption or using structured
parameterization based on eigenvalues decomposition [6] or factor modeling [37]. In this work, we follow a third approach
based on the concept of inverse regressionwhile remaining parametric as described in [11]. The idea is to bypass the difficulty
of estimating a high-to-low dimensional mapping g by estimating instead the other-way-around relationship, namely the
low-to-high or inversemapping from Y to X. This requires then to focus first on a model of the distribution of X given Y and
implies the definition of a joint model on (Y,X) to go from one conditional distribution to the other. The reference to a joint
distribution is already present in the mixture of experts (MoE) model of [43] in the Gaussian case. However, inversion is not
addressed and generally not tractable in non-Gaussian MoE such as those proposed in [8].
Mixture of linear regressions. Because Y is of moderate dimension, typically less than 10, the inverse regression is likely to
be much easier to estimate. However, it is still likely to be nonlinear. An attractive approach for modeling nonlinear data is
to use a mixture of linear models; see [11,19,43]. Focusing on the modeling of the inverse regression, we consider that each
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