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a b s t r a c t

With the advance of technology, thousands of curves can be simultaneously recorded by
electronic devices, such as simultaneous EEG and fMRI data. To study the relationship
between these curves, we consider a functional linear regression model with functional
response and functional predictors, where the number of predictive curves is much larger
than the sample size. The high dimensionality of this problem poses theoretical and practi-
cal difficulties for the existing methods, including estimation inconsistency and prediction
inaccuracy. Motivated by the simultaneous EEG and fMRI data, we focus on models with
sparsity structures where most of the coefficient functions of the predictive curves have
small norms. To take advantage of this sparsity structure and the smoothness of coefficient
functions, we propose a simultaneous sparse-smooth penalty which is incorporated into a
generalized functional eigenvalue problem to obtain estimates of the model. We establish
the asymptotic upper bounds for the prediction and estimation errors as both the sample
size and the number of predictive curves go to infinity. We implement the proposed
method in the R package FRegSigComp. Simulation studies show that the proposed
methodhas goodpredictive performance formodelswith sparsity structures. The proposed
method is applied to a simultaneous EEG and fMRI dataset.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been widely used to study brain
activities in neuroscience. EEG captures the electrical signals generated by nerve cells in the brain through dozens of
electrodes placed around the head. An fMRI scan produces a three-dimensional image which can simultaneously record
the activation levels of thousands of voxels, i.e., small three-dimensional cuboids in a brain image. In recent years, the
simultaneous recording and analysis of EEG and fMRI has received substantial attention [14]. This technology records the
EEG and fMRI time series simultaneously while subjects perform tasks.

Motivated by the study of the association between EEG and fMRI data, we consider a functional linear regression model
with functional response, e.g., the time series of a particular EEG feature and a high dimensional number of predictive curves,
e.g., the time series curves of thousands of voxels in fMRI data. Specifically, we consider the model

∀t∈[a,b] y(t) = µ(t) +

p∑
j=1

∫ 1

0
xj(s)βj(s, t)ds + ε(t), (1)
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where y(t) is the response function defined in an interval [a, b] and the predictive curves, x1(s), . . . , xp(s), without loss of
generality, are random functions defined in [0, 1]. The number p of predictive curves can bemuch larger than the sample size
in practice, and correlation usually exists among predictive functions. The functions β1(s, t), . . . , βp(s, t) are the p coefficient
functions, whileµ(t) and ε(t) are the intercept function and the noise function, respectively.Within-function correlation can
exist in ε(t).

For models with functional predictors, many studies have been conducted on scalar-on-function regression where the
response is scalar, including but not limited to [4,5,7,12,16,24,28,30,31,33,34]. Some works such as [17,20] impose sparsity
penalties to select functional predictors. Relatively fewer works have been conducted on function-on-function regression
with functional response and functional predictors. The existing methods [6,15,21,22,25,27,31,35,37,39,40] focus either on
one or a small number of predictive curves and establish asymptotic results with p fixed. These are not appropriate for
Model (1), which has a large number of predictive curves. In theory, since we assume that p ≫ n in Model (1), it is more
natural to consider what happens when both p and n go to infinity. In practice, the prediction errors of the existing methods
can increase fast as p increases. For example, in Simulation 4 in Luo and Qi [21], the prediction errors when p = 30 are much
larger than those with p < 10. Furthermore, heavy computational load prevents the application of these methods to models
with a large number of predictive curves.

In the simultaneous EEG-fMRI data, it is believed that a specific brain activity is only related to local regions in the brain,
which implies that in Model (1), only a few coefficient functions are nonzero among β1(s, t), . . . , βp(s, t). Thus, there is
a sparsity structure in the model for the simultaneous EEG-fMRI data. In this paper, we consider Model (1) with a more
general sparsity structure and assume that most coefficient functions have relatively small L2 norms.

Specifically, using ∥β∥L2,1 = ∥β1∥L2 +· · ·+∥βp∥L2 to measure the sparsity of the vector β(s, t) = (β1(s, t), . . . , βp(s, t))⊤,
we assume that

√
ln(p)/n → 0 and the sparsity ∥β∥L2,1 increases more slowly than

√
n/ln(p) as n → ∞. Under these

assumptions, we aim to estimate the expansion of β(s, t) introduced in Luo and Qi [21]. We propose a simultaneous sparse-
smooth penalty which is incorporated in a generalized functional eigenvalue problem to obtain the estimates. We propose
an efficient algorithm to solve the penalized generalized functional eigenvalue problemwith thousands of predictive curves
and the method for choosing the number of components and tuning parameters. We establish asymptotic upper bounds for
the estimation error and the prediction error. Simulation studies are performed to evaluate the estimation and prediction
performance and the effects of penalties. The proposed method is applied to an EEG-fMRI data set.

The rest of the paper is organized as follows. We introduce our method in Section 2 and provide asymptotic results in
Section 3. The choice of tuning parameters and the number of components are discussed in Section 4. Simulation studies and
an application study are provided in Sections 5 and 6, respectively.We summarize this paperwith discussion in Section 7 and
provide all the proofs, the details of computations and algorithms, and additional figures and tables in theOnline Supplement.

2. Methodology

We first introduce some notations. We use vectors and matrices of functions, and the transpose and multiplication
operations on them are the same as those on the usual vectors and matrices. For example, let A(t) and C(s, t) denote q × p
and p × r matrices of functions with (i, j)th entry aij(t) and (j, k)th entry cjk(s, t), respectively. The multiplication A(t)C(s, t)
is a q × r matrix of functions whose (i, k)th entry is the function ai1(t)c1k(s, t) + · · · + aip(t)cpk(s, t).

We define the element-wise integrals of vectors and matrices of functions. For example,
∫
C(s, t)ds is a p × r matrix of

functions with (j, k)th entry equal to
∫
cjk(s, t)ds which is a function of t . We use ∥ · ∥2 to denote the usual Euclidean norm

of a vector and ∥ · ∥L2 to denote the L2 norm of a square integrable function. For any vector d(s) (or d(s, t)) of functions, we
define the following L1-type and L2-type norms

∥d∥L2,1 =

p∑
j=1

∥dj∥L2 , ∥d∥L2,2 =

√ p∑
j=1

∥dj∥2
L2
,

respectively. Under these notations, Model (1) can be written as

y(t) = µ(t) +

∫ 1

0
x(s)⊤β(s, t)ds + ε(t), (2)

where x(s) = (x1(s), . . . , xp(s))⊤ is the p-dimensional vector of predictive functions, β(s, t) = (β1(s, t), . . . , βp(s, t))⊤ is
the p-dimensional vector of coefficient functions with sparsity structure in that most of its coordinates have small norms.
Throughout this paper, we assume that each βj(s, t) is a nonrandom function in L2([0, 1] × [a, b]) and each xj(s) is a random
function taking values in L2[0, 1]with E{xj(s)} = 0 for all j ∈ {1, . . . , p}. Furthermore, ε(t) is a random function taking values
in L2[a, b] with E{ε(t)} = 0, and is independent of x(s).

We will generalize the method in Luo and Qi [21] to Model (1) with p ≫ n. We first briefly review the decomposition
of β(s, t) introduced in Luo and Qi [21] under the notations of this paper in Section 2.1, and then introduce our two-step
procedure to estimate the decomposition and hence Model (1) with p ≫ n in Section 2.2.
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