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a b s t r a c t

Parameters from linear regressionmodels are often estimated by the ordinary least squares
estimator (OLSE) or by the best linear unbiased estimator (BLUE). These estimators can be
written in analytical form, so that it is not difficult to describe their performances under
variousmodel assumptions. In this paper,we study the problemof additive decompositions
of OLSEs and BLUEs of parameter spaces in a full multivariate general linearmodel (MGLM)
and in two specific submodels. We establish necessary and sufficient conditions for the
validity of various identities involving the OLSEs and BLUEs of whole and partial mean
parameter matrices under the MGLM and two smaller MGLMs.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In linear regressionmodeling, it is usual to decompose the full regressors as a sum of partial regressors in order to identify
those that are the most important or to rank them. Such a decomposition makes it possible to determine the roles of the
partial regressors, and to derive estimators of partial unknown parameters under such a partitioned linear model. Reduced
models are usually associated with a partitioned linear model, and it is of interest to establish additive decompositions of
the corresponding estimators.

Let us consider a multivariate general linear model (MGLM) defined by

M :

{
Y = XΘ + Ψ = X1Θ1 + X2Θ2 + Ψ ,

E(Ψ ) = 0, D(
−→
Ψ ) = cov(

−→
Ψ ,

−→
Ψ ) = σ 2(Σ2 ⊗ Σ1),

(1)

where Y ∈ Rn×m is a matrix of observable dependent variables which comes from an experimental design giving rise to n
observations, and X = (X1,X2) ∈ Rn×p is the model matrix of arbitrary rank, and for i ∈ {1, 2}, Xi ∈ Rn×pi . In this setup,
Θ = (Θ⊤

1 , Θ⊤

2 )⊤ ∈ Rp×m is matrix of fixed but unknown parameters, and for i ∈ {1, 2}, Θi ∈ Rpi×m with p = p1 + p2.
Furthermore, Ψ ∈ Rn×m is a matrix of randomly distributed error terms with zero mean matrix, E and D denote expectation
and dispersion matrix, respectively, and Σ1 = (σ1ij) ∈ Rn×n and Σ2 = (σ2ij) ∈ Rm×m are two known nonnegative definite
matrices of arbitrary rank while σ 2 is an arbitrary positive scaling factor. Eq. (1) is also called a general multivariate Gauss–
Markov model in the statistical literature.

MGLMs are fairly straightforward extensions of univariate general linear models (UGLMs), in which several response
variables are regressed on a given set of explanatory variables. Such models are useful in that they provide a more complete
picture of a global problem involving a number of dependent and independent variables. They occur, e.g., in analysis of
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variance (ANOVA), analysis of covariance (ANCOVA), multivariate analysis of variance (MANOVA), analysis of repeated
measurements, factor analysis models, as well as in many areas of applications.

It is common in regression analysis to rewrite a MGLM in partitioned form for inference purposes. Often, we also meet
with transformations of a model, and use these transformations to estimate and predict the parameter space in the model.
Linear transformations are among the simplest; they consist of pre-multiplying both sides of (1) by twomatrices X⊥

1 and X⊥

2
to yield the following pair of transformed MGLMs

M1 : X⊥

2 Y = X⊥

2 X1Θ1 + X⊥

2 Ψ , E(X⊥

2 Ψ ) = 0, D(
−−→
X⊥

2 Ψ ) = σ 2(Σ2 ⊗ X⊥

2 Σ1X⊥

2 ), (2)

M2 : X⊥

1 Y = X⊥

1 X2Θ2 + X⊥

1 Ψ , E(X⊥

1 Ψ ) = 0, D(
−−→
X⊥

1 Ψ ) = σ 2(Σ2 ⊗ X⊥

1 Σ1X⊥

1 ), (3)

which are usually called correctly-reduced versions ofM in (1); see [10,12] for the corresponding expositions. Since the two
linear transformations X⊥

2 Y and X⊥

1 Y are singular, each of the model equations in M1 and M2 is not equivalent to the full
model equation in M. An advantage of formulating M1 and M2 arises from the fact that the partial parameter matrices Θ1
and Θ2 in M do not occur in M2 and M1, respectively. Thus we can estimate Θ1 and Θ2 in M individually from M1 and
M2.

In many situations, we have to work with these derivedmodels, hoping that inference results obtained fromM1 andM2
are equivalent to those that would correspond toM. The search for connections between estimators under original models
and their reduced models is called a linear sufficiency problem in statistical inference, which was first introduced in [2,4]
and was considered in the statistical literature.

Two other submodels associated with M in (1) are given by

N1 : Y = X1Θ1 + Ψ1, E(Ψ1) = 0, D(
−→
Ψ 1) = σ 2(Σ2 ⊗ Σ1), (4)

N2 : Y = X2Θ2 + Ψ2, E(Ψ2) = 0, D(
−→
Ψ 2) = σ 2(Σ2 ⊗ Σ1). (5)

In this framework, both N1 and N2 are regarded as incorrectly-reduced (or mis-specified) models of M in (1). In order to
derive general conclusions, no distributional assumptions are made except the existence of the first and second moments,
and no restrictions to the ranks of the matrices Y, X, X1, X2, Σ1, and Σ2 in (1)–(5) are required.

A common method of handling MGLMs is to use the well-known Kronecker products and vectorization operators of
matrices. Through these operations, (1), (4), and (5) can equivalently be rewritten as the following three UGLMs:

M̂ :
−→
Y = (Im ⊗ X)

−→
Θ +

−→
Ψ = (Im ⊗ X1)

−→
Θ 1 + (Im ⊗ X2)

−→
Θ 2 +

−→
Ψ , (6)

N̂1 :
−→
Y = (Im ⊗ X1)

−→
Θ 1 +

−→
Ψ 1, (7)

N̂2 :
−→
Y = (Im ⊗ X2)

−→
Θ 2 +

−→
Ψ 2. (8)

This fact demonstrates that there is quite a lot of synergy between UGLMs and MGLMs, and thus we can extend various
known facts and results from UGLMs to MGLMs by using the vectorization operations of matrices.

An important problem in the analysis of MGLMs is the search for estimators and the determination of their properties
and features under various model assumptions. In this context, statisticians are often interested in describing relationships
between different estimators, and especially, in establishing identities between them. Indeed, XΘ = X1Θ1 + X2Θ2 in (1),
so that (2)–(5) derive from (1). Hence, inference results on (1)–(8) should be interconnected.

In this paper, we first show that the four fundamental additive decomposition identities

OLSEM(XΘ) = OLSEM(X1Θ1) + OLSEM(X2Θ2),
BLUEM(XΘ) = BLUEM(X1Θ1) + BLUEM(X2Θ2),
OLSEM(XΘ) = OLSEM1 (X1Θ1) + OLSEM2 (X2Θ2),
BLUEM(XΘ) = BLUEM1 (X1Θ1) + BLUEM2 (X2Θ2)

always hold under the assumptions that X1Θ1 and X2Θ2 are estimable underM,M1, andM2, where the symbols OLSE and
BLUE denote the ordinary least squares estimator and the best linear unbiased estimator of unknown parameter matrices
under MGLMs, respectively. We then consider the additive decomposition identities

OLSEM(XΘ) = OLSEN1 (X1Θ1) + OLSEN2 (X2Θ2), (9)
BLUEM(XΘ) = BLUEN1 (X1Θ1) + BLUEN2 (X2Θ2) (10)

under M, N1, and N2. These identities have many different statistical interpretations and occur frequently in the statistical
analysis of linear regression models. However, (9) and (10) do not necessarily hold in general situations. Thus, we are first
interested in establishing necessary and sufficient conditions for the above two additive decomposition equalities to hold.

Additive decompositions of estimators have been an important research topic in the context of classic and recent
statistical analysis; see, e.g., [5,7,10,12,18,19,23–25]. As is well known, statistical inference for MGLMs is entirely based
on computations with the given matrices in the models, and formulas and algebraic tricks for handling matrices in linear
algebra and matrix theory play an important role in the derivations of these estimators and the characterization of their
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