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a b s t r a c t

Many inference techniques for multivariate data analysis assume that the rows of the data
matrix are realizations of independent and identically distributed random vectors. Such
an assumption will be met, for example, if the rows of the data matrix are multivariate
measurements on a set of independently sampled units. In the absence of an independent
random sample, a relevant question is whether or not a statistical model that assumes such
row exchangeability is plausible. One method for assessing this plausibility is a statistical
test of row covariation.Maintenance of a constant type I error rate regardless of the column
covariance or matrix mean can be accomplished with a test that is invariant under an
appropriate group of transformations. In the context of a class of elliptically contoured
matrix-variate regression models (such as matrix normal models), it is shown that there
are no non-trivial invariant tests if the number of rows is not sufficiently larger than the
number of columns. Furthermore, even if the number of rows is large, there are no non-
trivial invariant tests that have power to detect arbitrary row covariance in the presence of
arbitrary column covariance. However, biased tests can be constructed that have power to
detect certain types of row covariance that may be encountered in practice.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A canonical statistical model for an observed data matrix Y ∈ Rn×p is that the rows of the matrix are i.i.d. realizations
from a mean-µ p-variate normal distribution with covarianceΣ . We write this hypothesized model as

Y ∼ Nn×p(1µ⊤,Σ ⊗ In),

where 1 is the n-vector of all 1 s and ‘‘⊗’’ is the Kronecker product. If the rows represent multivariate measurements on a
simple random sample of n units from a population, then the assumption of i.i.d. rows is a valid one (or nearly valid for a
large finite population, in the case of sampling without replacement). However, in many analyses, the units are obtained
from a convenience sample rather than a random sample. We might then want to entertain an alternative model for the
data, such as

Y ∼ Nn×p(1µ⊤,Σ ⊗ Ψ ),

where Ψ is an unknown n × n covariance matrix describing dependence and heteroscedasticity among the rows of Y. This
alternative model is the so-called matrix normal model; see, e.g., Dawid [3]. Letting yi and yi′ be two rows of Y, this model
implies that cov(yi, yi′) = ψi,i′Σ .
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Several parametric and nonparametric tests of row dependence in the presence of column dependence were considered
in Efron [4] for the case that p > n. The parametric tests were based on estimates Ψ̂ ofΨ in the matrix normal model. Efron
suggested that such tests appear to be promising, but suffer some deficiencies. In particular, the distribution of the proposed
estimate Ψ̂ of Ψ depends on the unknown value ofΣ , a phenomenon that Efron referred to as ‘‘leakage’’. Proceeding with a
similar approach, Muralidharan [9] constructed a permutation invariant test using asymptotic approximations in the p > n
scenario. This test is conservative, and has power that depends on bothΣ and Ψ , that is, it also experiences some leakage.

The issue of leakage suggests the use of invariant tests which, having power functions that do not depend on the
parameters of the null model, are leakage-free. In this article, we characterize the invariant tests of H : Ψ = I versus
K : Ψ ≠ I in matrix regression models that have a stochastic representation of the form

Y = XB⊤
+ Ψ 1/2Z61/2,

where X ∈ Rn×q is an observed regression matrix, (B,Σ,Ψ ) are unknown parameters, and Z is a random mean-zero error
matrix with uncorrelated entries. For notational simplicity, the results in this article are developed for Gaussian random
matrices, but as will be discussed, the results hold for a more general class of elliptically contoured matrix distributions,
including heavy-tailed and contaminated distributions; see Gupta and Varga [7].

The results of this article are primarily negative, illustrating inherent limitations on our ability to detect arbitrary row
covariance in the presence of arbitrary column covariance. In the next section, I show that if n ≤ p + q then there are
no non-trivial invariant tests of H versus K . In Section 3, I show that if n > p + q then there are no non-trivial unbiased
invariant tests. The implication of these results is that, for thesematrix regressionmodels, there are no useful invariant tests
for arbitrary row covariance in the presence of arbitrary column covariance. On the bright side, one can construct biased
invariant tests that have power to detect certain types of row dependence thatmay be of interest in practice. For example, in
Section 4, I obtain the UMP invariant test in a submodel where the eigenvector structure ofΨ is known. This result is used in
Section 5 to construct a test that has the ability to detect positive dependence among arbitrary pairs of rows. The use of this
test is illustrated on several datasets. In Section 6, I show how the results of the other sections generalize to non-Gaussian
models, and discuss some open questions.

2. Invariant test statistics

We are interested in testing H : Ψ = I versus K : Ψ ≠ I in the matrix normal regression model

Y ∼ Nn×p(XB⊤,Σ ⊗ Ψ ), B ∈ Rp×q, Σ ∈ S+

p , Ψ ∈ S+

n , (1)

where X is a known n × q matrix with rank q < n and S+

k denotes the space of k × k nonsingular covariance matrices.
Let P = I − X(X⊤X)−1X⊤ so that R ≡ PY is the matrix of residuals corresponding to the least-squares estimate of B. Then
E(RR⊤

|B,Σ ⊗Ψ ) = tr(Σ)× PΨ P, which suggests the use of RR⊤ to test whether or not Ψ = I. The problem with such an
approach is that, as pointed out by Efron [4], the distribution of RR⊤ will generally depend on the unknown value of Σ . If
the distribution of a test statistic depends onΣ , then maintaining the level of the test for allΣ without sacrificing power is
difficult.

With this in mind, we would like to identify test statistics whose distributions under H do not depend on B or Σ .
To do this, we first note that the model and testing problem are invariant under the group G of transformations g of
the form g(Y) = XC⊤

+ YA⊤ for C ∈ Rp×q and nonsingular A ∈ Rp×p: If Y ∼ Nn×p(XB⊤,Σ ⊗ Ψ ), then g(Y) ∼

Nn×p[X(AB + C)⊤,AΣA⊤
⊗ Ψ ], It follows that the group G induces a group Ḡ of transformations on the parameter space

of the form ḡ(B,Σ ⊗ Ψ ) = (AB + C,AΣA⊤
⊗ Ψ ). This group is transitive on the null parameter space, and so any statistic

or test function φ that is invariant to G, meaning that φ{g(Y)} = φ(Y) for all g ∈ G, will have a distribution that does not
depend on B orΣ . In particular, if φ is invariant then E{φ(Y)|B,Σ ⊗ I} is constant in B andΣ .

2.1. Maximal invariant statistics

Any invariant test function or statistic must depend on Y only through a statistic that is maximal invariant, that is, an
invariant function M of Y for which M(Y1) = M(Y) implies Y1 = g(Y) for some g ∈ G. Therefore, characterizing the class
of invariant tests requires that we find a maximal invariant statistic (since all maximal invariant statistics are functions of
each other, we only need to find one). One maximal invariant statistic in particular has an intuitive form: Let B̂ be the OLS
estimator of B, let

Σ̂ = (Y − XB̂⊤)⊤(Y − XB̂⊤)/n,

and let Σ̂− be the inverse or Moore–Penrose inverse of Σ̂ , depending on whether or not Σ̂ is full rank. As will be shown
below, the n × nmatrix given by

M(Y) = (Y − XB̂⊤)Σ̂−(Y − XB̂⊤)⊤/n
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