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a b s t r a c t

The empirical Bayes estimators in mixedmodels are useful for small area estimation in the
sense of increasing precision of prediction for small area means, and one wants to know
the prediction errors of the empirical Bayes estimators based on the data. This paper is
concerned with conditional prediction errors in the mixed models instead of conventional
unconditional prediction errors. In themixedmodels based on natural exponential families
with quadratic variance functions, it is shown that the difference between the conditional
and unconditional prediction errors is significant under distributions far from normality.
Especially for the binomial–beta mixed and the Poisson–gamma mixed models, the
leading terms in the conditional prediction errors are, respectively, a quadratic concave
function and an increasing function of the direct estimate in the small area, while
the corresponding leading terms in the unconditional prediction errors are constants.
Second-order unbiased estimators of the conditional prediction errors are also derived and
their performances are examined through simulation and empirical studies.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The empirical best linear unbiased predictors (EBLUP) or empirical Bayes estimators (EB) in the Bayesian context have
been used for providing reliable small-area estimates in the normal linear mixed models. The unconditional mean squared
errors (MSEs) have been widely used as a measure for prediction error of EBLUP, and the asymptotic approximations of
the MSEs and their approximated unbiased estimators have been studied in a lot of papers under the assumption that the
number of small areas is large. For example, see Prasad and Rao [14], Ghosh and Rao [8], Rao [15], Datta, Rao and Smith [4]
and Hall and Maiti [10].

When data from the small area of interest are observed, the practitioners want to know how large prediction errors
the EBLUP based on the observed data have. Concerning this issue, the conventional unconditional MSEs do not give us
appropriate estimation errors, since it is an integrated measure. Booth and Hobert [2] suggested the conditional MSE given
the data of the small area of interest, and Datta, Kubokawa, Molina and Rao [3] and Torabi and Rao [16] derived second-
order unbiased estimators of the conditional MSE in the Fay–Herriot model [5] and nested error regression model [1] which
are well-known normal linear mixed models. As pointed out in both papers, the difference between the conditional and
unconditionalMSEs is small in the normal linearmixedmodels, since it appears in the second-order terms. In the generalized
linear mixed models (GLMM), however, Booth and Hobert [2] showed that the difference is significant for distributions far
from normality, since it appears in the first-order or leading terms.
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Although the GLMMs are useful for analyzing count data in small area estimation, it is computationally hard to derive the
EBLUP and to evaluate their conditional MSEs, because themarginal likelihood and EBLUP in the GLMM cannot be expressed
in closed forms. In fact, we need relatively high dimensional numerical integration to evaluate the conditionalMSEs. Another
point is the assumption that sample sizes of small areas are large, under which the Laplace approximation can be used to
get asymptotically unbiased estimators of the conditional MSEs. However, this assumption is against the situation in small
area estimation with small samples sizes.

An alternative model is the mixed model based on the natural exponential families with quadratic variance functions
(NEF-QVF) suggested in Ghosh and Maiti [6,7]. In the NEF-QVF mixed models, the BLUP or the Bayes estimator can be
expressed explicitly as the weighed average of a sample mean and a prior mean. Moreover, the MSE of the empirical Bayes
estimator can be approximated analytically, and their asymptotically unbiased estimator can be obtainedwithout assuming
that samples of small areas are large. The NEF-QVFmixedmodels include the binomial–betamixed and the Poisson–gamma
mixed models, which are practically useful for analyzing mortality data in small areas.

Thus, in this paper, we treat the NEF-QVF mixed models instead of the GLMM and focus on the conditional prediction
errors or the conditional MSEs (CMSE) of the empirical Bayes estimators (EB). Assuming that the number of small areas is
large, but sample sizes in small areas are bounded, we not only derive second-order approximations of the conditional MSEs
and their second-order unbiased estimators in closed forms, but also show that the difference between the conditional and
unconditional MSEs is significant and appears in the first-order terms under distributions far from normality.

The paper is organized as follows: In Section 2, the CMSE of EB is addressed in the general mixed models, and the
second-order approximation of the CMSE is derived under suitable conditions on estimators of model parameters and
predictors. Second-order unbiased estimators of the CMSE are obtained in two ways of the analytical and parametric
bootstrap methods.

In Section 3, the NEF-QVF mixed models are investigated as an application of the general results in Section 2. The
second-order approximations of the CMSEs and their second-order unbiased estimators are obtained in analytical and closed
formswithout assuming that sample sizes of small areas tend to infinity. Ghosh andMaiti [6] derived the unconditional MSE
of EB, and their estimationmethod and techniques for analysis are heavily used in Section 3. It is interesting to point out that
the first-order term in the CMSE is an increasing function of the direct estimate in the small area for the Poisson–gamma
mixedmodel, and it is a quadratic concave function for the binomial–betamixedmodel, while the corresponding first-order
terms in the unconditional MSEs are constants for both mixed models.

Simulation and empirical studies of the suggested procedures are given in Section 4. Two data sets are used for the
empirical studies. One is the Stomach Cancer Mortality Data in Saitama Prefecture in Japan, and the Poisson–gammamixed
model is applied. The other is the Infant Mortality Data Before World War II in Ishikawa Prefecture in Japan, and we use
the binomial–beta mixed model. Through these analyses, it is observed that the estimates of the conditional MSEs are more
variable than those of the unconditional MSEs, since conditional MSE depends on the data of the area of interest. For some
areas, the conditional MSE gives much higher risks than the unconditional MSE, namely, the conventional MSE seems to
under-estimate the conditional MSE. Thus, we suggest providing estimates of the conditional MSE.

Finally, the concluding remarks are given in Section 5, and the technical proofs are given in the Appendix.

2. Conditional MSE of empirical Bayes estimator in general mixed models

Let y = (y1, . . . , ym)⊤ be a vector of observable random variables, and let θ = (θ1, . . . , θm)
⊤ be a vector of unobservable

random variables. Let η be a q-dimensional vector of unknown parameters. In this paper, we treat continuous or discrete
cases for yi and θ. The conditional probability density (or mass) function of yi given (θi, η) is denoted by f (yi|θi, η), and the
conditional probability density (or mass) function of θi given η is denoted by π(θi|η), namely,

yi|(θi, η) ∼ f (yi|θi, η)
θi|η ∼ π(θi|η)

i = 1, . . . ,m. (2.1)

This expresses the general parametric mixed models. Since it can be interpreted as a Bayesian model, we here use the
terminologyused in Bayes statistics. In the continuous case, themarginal density function of yi for givenη and the conditional
(or posterior) density function of θi given (yi, η) are given by

mπ (yi|η) =


f (yi|θi, η)π(θi|η)dθi

π(θi|yi, η) = f (yi|θi, η)π(θi|η)/mπ (yi|η)
i = 1, . . . ,m, (2.2)

and we use the same notations in the discrete case. Then, for i = 1, . . . ,m, we consider the problem of predicting a scalar
quantity ξi(θi, η) of each small area.

When ξi(θi, η) is predicted withξi = ξi(y), the predictorξi can be evaluated with the unconditional and conditional
MSEs, described as

MSE(η,ξi) = E
ξi − ξi(θi, η)

2

,

CMSE(η,ξi|yi) = E
ξi − ξi(θi, η)

2
|yi


,
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