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a b s t r a c t

Wepropose a novel kernel estimator of the baseline function in a general high-dimensional
Coxmodel, forwhichwederive non-asymptotic rates of convergence. To construct our esti-
mator, we first estimate the regression parameter in the Coxmodel via a LASSO procedure.
We then plug this estimator into the classical kernel estimator of the baseline function, ob-
tained by smoothing the so-called Breslow estimator of the cumulative baseline function.
We propose and study an adaptive procedure for selecting the bandwidth, in the spirit of
Goldenshluger and Lepski (2011). We state non-asymptotic oracle inequalities for the final
estimator, which leads to a reduction in the rate of convergencewhen the dimension of the
covariates grows.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The Cox model, introduced by Cox [9], is a regression model often considered in survival analysis, which relates the
distribution of a time T to the values of covariates. The hazard function of T is then defined by

λ0(t, Z) = α0(t) exp(β⊤

0 Z), (1)

where Z = (Z1, . . . , Zp)⊤ is a p-dimensional vector of covariates, β0 = (β01 , . . . , β0p)
⊤ the vector of regression coefficients

and α0 the baseline hazard function.
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The regression parameter β0 and the baseline function α0 are the two unknown parameters in this model. In previous
works, more attention has been paid to the estimation of the regression parameter than to the estimation of the baseline
function.

There are good reasons for this. First, the Cox partial log-likelihood, introduced by Cox [9], allows us to estimate β0
without knowledge of α0. Second, the regression parameter is directly related to the covariates. Therefore, in order to select
the relevant covariates that best explain the survival time, we need to estimate the regression parameter. Many papers deal
with the problem of the estimation of β0, the number of covariates p being large (or not) compared with the number of
individuals n. When p is smaller than n, the usual estimator of β0 is obtained by maximizing the Cox partial log-likelihood
(see Andersen et al. [2] as a good reference).When the number of covariates grows, the LASSO procedure is often considered.
This consists of aminimization of the negative ℓ1-penalized Coxpartial log-likelihood. Asymptotic results are stated in Bradic
et al. [4], Kong and Nan [18] and Bradic and Song [5]. Lastly, the non-asymptotic rate of convergence of the LASSO is now
known to be of order

√
ln p/n, see Huang et al. [17].

The estimation of the baseline function α0 has been less studied. One known estimator of the baseline function is a
kernel estimator, introduced by Ramlau-Hansen [23,24]. We present here its form in the special case of right-censoring. Let
us consider, for the moment, that we observe for i = 1, . . . , n, (Xi, δi, Zi), where Xi = min(Ti, Ci), δi = 1{Ti≤Ci}, Ti is the time
of interest, and Ci the censoring time. The usual kernel estimator is then obtained from an estimator of the cumulative
baseline function A0 defined by A0(t) =

 t
0 α0(s)ds. This estimator is called the Breslow estimator and is defined, for

t > 0, by

Â0(t, β̂) =

n
i=1

δi

Sn(Xi, β̂)
, with Sn(t, β̂) =


i:Ti≥t

exp( ˆβ⊤Zi), (2)

see Ramlau-Hansen [24] and Andersen et al. [2] for details. From Â0(·, β̂), the kernel function estimator for α0 is derived by
smoothing the increments of the Breslow estimator. It is defined by

α̂
β̂
h (t) =

1
h

 τ

0
K
 t − u

h


dÂ0(u, β̂), τ ≥ 0, (3)

with K : R → R a kernel with integral 1, and h a positive parameter called the bandwidth. This estimator was in-
troduced and studied by Ramlau-Hansen [23,24] within the framework of the multiplicative intensity model for count-
ing processes, thereby extending its use to censored survival data. Consistency and asymptotic normality are proven in
Ramlau-Hansen [24] with fixed bandwidth.

The choice of the bandwidth in kernel estimation is crucial, in particular when one is interested in establishing
non-asymptotic adaptive inequalities. State-of-the-art methods are based on cross-validation. Ramlau-Hansen [22] has
suggested the cross-validation method to select the bandwidth but without any theoretical guarantees. For randomly
censored survival data, Marron and Padgett [21] have shown that the cross-validation method gives the optimal bandwidth
for estimating the density: the ratio between the integrated squared error for the cross-validation bandwidth and the
infimum of the integrated squared error for any bandwidth almost surely converges to 1. Grégoire [15] has considered
the cross-validated method suggested by Ramlau-Hansen [22] for adaptive estimation of the intensity of a counting process
and has proved some consistency and asymptotic normality results for the cross-validated kernel estimator.

However, all the results for the adaptive kernel estimator with a cross-validated bandwidth are asymptotic. No non-
asymptotic oracle inequalities have to date been stated for the kernel estimator of the baseline function. In addition, to our
knowledge, the construction of α̂β̂

h has not yet been considered for high-dimensional covariates. The goal of the present
paper is thus twofold: whatever the dimension, we aim to propose an estimator α̂β̂ of the baseline function, for which we
can establish a non-asymptotic oracle inequality to measure its performance. The loss of prediction quality of |α̂β̂

− α0|

when p increases will be quantified.
To fulfill these purposes, the idea is to first estimate the regression parameter β0 via a LASSO procedure applied to the

Cox partial log-likelihood, then to plug this estimator in the usual kernel estimator (3) of the baseline hazard function;
then, lastly, to select a data-driven bandwidth, following a procedure adapted from Goldenshluger and Lepski [14]. In the
latter, the problem of bandwidth selection in kernel density estimation is addressed and an adaptive estimator is derived,
which satisfies non-asymptotic minimax bounds. This method was then considered by Doumic et al. [11] for estimating
the division rate of a size-structured population in a non-parametric setting, by Bouaziz et al. [3] to estimate the intensity
function of a recurrent event process, and by Chagny [8] for the estimation of a real function via a warped kernel strategy.
In the present paper, we consider this method in order to obtain an adaptive kernel estimator of the baseline function
with a data-driven bandwidth. We establish the first adaptive and non-asymptotic oracle inequality, which guarantees the
theoretical performance of this kernel estimator. The oracle inequality depends on non-asymptotic control of |β̂ − β0|1
deduced from an estimation inequality in Huang et al. [17] and extended to the case of unbounded counting processes
(see Guilloux et al. [16] for details).

The paper is organized as follows. In Section 3, we describe the two-step procedure to estimate the baseline function:
first, we describe the estimation of β0 as a preliminary step and give the bound for |β̂ − β0|1, and then we focus on the
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