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a b s t r a c t

This paper develops a Bayesian local influence approach to assess the effects of minor
perturbations to the prior, sampling distribution and individual observations on the
statistical inference in generalized partial linear mixed models (GPLMMs) with the
distribution of random effects specified by a truncated and centered Dirichlet process
(TCDP) prior. A perturbationmanifold is defined. Themetric tensor is employed to select an
appropriate perturbation vector. Several Bayesian local influence measures are proposed
to quantify the degree of various perturbations to statistical models based on the first
and second-order approximations to the objective functions including the φ-divergence,
the posterior mean distance and Bayes factor. We develop two Bayesian case influence
measures to detect the influential observations in GPLMMs based on the φ-divergence
and Cook’s posterior mean distance. The computationally feasible formulae for Bayesian
influence analysis are given. Several simulation studies and a real example are presented
to illustrate the proposed methodologies.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Generalized partial linear mixed models (GPLMMs) are often used to fit longitudinal and repeated measurement or
clustered data over time by considering the between-subject and within-subject variations in various settings including
education, psychology, medicine, public health, epidemiology and econometrics. Various methods have been proposed to
make statistical inference on GPLMMs under the assumption that the random effects follows a fully parametric distribution
such as normal distribution in recent years. For example, seeHe, Fung and Zhu [9], Zhou, Zhu and Fung [35], Qin and Zhu [27],
Liang [18] and Qin, Bai and Zhu [26]. But, the parametric assumption may be unreasonable in some practical problems
(Kleinman and Ibrahim [13,14]; Lee, Lu and Song [16]; Li, Müller and Lin [17]; Yang, Dunson and Baird [34]). And violation
of the parametric assumption on the random effects may lead to unreasonable or incorrect conclusions. Hence, this paper
extends GPLMMs by allowing the random effects to have a nonparametric prior distribution. Particularly, this paper uses a
truncated and centered Dirichlet process (TCDP) prior to specify the distribution of the random effects in GPLMMs. But, so
far, we have not seen any work in the literature on Bayesian influence analysis for data from GPLMMs.

The widely used Bayesian influence analysis methods mainly include Bayesian case influence analysis and Bayesian
local influence analysis. Bayesian case influence diagnostics have been developed under various statistical models based
on the Kullback–Leibler (K–L) divergence and the Conditional Predictive Ordinate (CPO). For example, Pettit [22] used the
K–L divergence to identify influential observations in his review of Bayesian diagnostics; Weiss and Cook [33] presented
a Bayesian case influence diagnostic to detect influential observations via the K–L divergence in generalized linear
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models; Peng and Dey [20] suggested a Bayesian diagnostic via some general divergence measures including the K–L
divergence on the posterior distribution and examined the application of this Bayesian diagnostic to several regression
models such as a nonlinear model; Weiss [32] developed a Bayesian case deletion diagnostic via model perturbations
and studied its relationship to the K–L divergence and CPO; Bradlow and Zaslavsky [2] investigated application of case
influence analysis to Bayesian hierarchical models; Cho, Ibrahim, Sinha and Zhu [4] proposed case influence diagnostics
via the K–L divergence for complex survival models and derived a simplified formula to compute the K–L divergence
between the posterior densities for the full data and the deleted data; Jackson, White and Carpenter [12] proposed
two efficient ways to approximate Bayesian case influence diagnostic by using outputs from MCMC algorithm; Zhu,
Ibrahim, Cho and Tang [36] investigated the statistical properties of three Bayesian case influence measures including the
φ-divergence, Cook’s posterior mode distance and Cook’s posterior mean distance for identifying a set of influential
observations for a variety of statistical models with missing data including models for longitudinal data and latent
variable models in the absence/presence of missing data. However, very little work has been done on systematically
studying Bayesian case influence measures including the φ-divergence and Cook’s posterior mean distance in a GPLMM
for longitudinal data. Hence, one of the main purposes of this paper is to develop the above mentioned two Bayesian case
influence measures to identify influential observations (or sets of influential observations) for our considered GPLMMs.

On the other hand, Bayesian local influence analysis has beenwidely investigated under various statistical models on the
basis of different objective functions. For example, Gustafson [8] used the norm of the Fréchet derivatives with respect to
the prior distribution to quantify the effect of the prior perturbation; McCulloch [19] generalized Cook’s [6] local influence
approach to assess the effect of perturbing the prior or likelihood based on the curvature of the K–L divergence (between
perturbed and unperturbed posteriors) in a Bayesian analysis; Perez, Martin and Rufo [21] used the norm of the Gateaux
derivative to measure the effect of the prior perturbation; van der Linde [31] developed a local influence approach to assess
the effect ofmultiplicativemodes of perturbation on posterior distributions. Recently, Ibrahim, Zhu and Tang [10] developed
a Bayesian local influencemethod to assess perturbations to the prior, the sampling distribution and individual observations
in a survival model; Zhu, Ibrahim and Tang [37] developed a general framework of Bayesian influence analysis for assessing
various perturbations to the data, the prior and the sampling distribution for a class of parametricmodels froma viewpoint of
differential geometry. However, to the best of our knowledge, there is very little work done on proposing a general Bayesian
local influence approach to simultaneously perturb the three components of a Bayesian model, assessing their effects and
examining their applications in Bayesian GPLMMs analysis with random effects specified by a TCDP prior. Hence, another
main purpose of this paper is to develop a Bayesian local influence approach to assess the effect of minor perturbations to
the individual observations, the prior and the sampling distribution of a Bayesian model in Bayesian GPLMMs analysis, and
propose a novel computationally low-cost approach to estimate the basic components in Bayesian local influence measure.
Following Zhu, Ibrahim and Tang [37], we construct the Bayesian perturbation manifold for the perturbation model and
the geometrical quantities for checking appropriate selection of a perturbation vector, and develop Bayesian local influence
measures for identifying the most perturbations based on the objective functions such as the φ-divergence, the posterior
mean distance and Bayes factor. Some computationally feasible formulae for Bayesian influence analysis are given by using
outputs from the MCMC algorithm.

The rest of this paper is organized as follows. Section 2 describes a GPLMM and presents a TCDP with a stick-breaking
prior to approximate the distribution of random effects and a P-spline approach to model nonparametric part and log of
variance of spline coefficients. Also, aMCMC algorithm for simultaneously estimating the unknown parameters and random
effects in GPLMMs is given in Section 2. Several Bayesian local influence measures are developed for assessing the effects of
minor perturbation to the data, the priors and the sampling distribution in Section 3. Two Bayesian case influence measures
including the φ-divergence and Cook’s posterior mean distance are developed to identify the most influential observations
in Section 4. Simulation studies and a real example are used to illustrate the proposed methodologies in Section 5. Some
concluding remarks are given in Section 6.

2. Model and MCMC algorithm

Let ui be a r×1 vector of random effects corresponding to the ith individual, and yij be an observation of the ith individual
measured at time tij for i = 1, . . . , n and j = 1, . . . , ni. Suppose that yi1, . . . , yini given ui are conditionally independent and
each yij|ui is distributed as an exponential family distribution whose probability density function is given by

p(yij|ui, φ) = exp

yijθij − b(θij)

φ
+ c(yij, φ)


, (1)

where φ is a scale parameter, c(y, φ) is a function only depending on y and φ, θij is the (scalar) canonical parameter. In this
paper, we assume that the conditional mean µij satisfies

ηij
∆
= f (µij) = xTijβ + wT

ijui + g(tij), i = 1, . . . , n, j = 1, . . . , ni, (2)

where f (·) is a knownmonotonic ‘‘link’’ function, xij is a p×1 vector of explanatory variables, β is a p×1 vector of unknown
parameters relating to the fixed effects, wij is a r × 1 vector of explanatory variables relating to the random effects, g(·) is
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