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a b s t r a c t

In this paper we consider partially linear varying coefficient models. We provide
semiparametric efficient estimators of the parametric part as well as rate-optimal
estimators of the nonparametric part. In our model, different nonparametric coefficients
have different smoothing variables. This requires employing a projection technique to
get proper estimators of the nonparametric coefficients, and thus conventional kernel
smoothing cannot give semiparametric efficient estimators of the parametric components.
We take the smooth backfitting approach in conjunction with the profiling technique to
get semiparametric efficient estimators of the parametric part. We also show that our
estimators of the nonparametric part achieve the univariate rate of convergence, regardless
of the covariate’s dimension. We report the finite sample properties of the semiparametric
efficient estimators and compare them with those of other estimators.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider the partially linear varying coefficient regression model (PLVCM) which takes the form

Y = X⊤β +

d
j=1

Zjαj(Uj)+ ε. (1.1)

Here, Y is a response variable, X = (X1, . . . , Xp)
⊤, Z = (Z1, . . . , Zd)⊤ and U = (U1, . . . ,Ud)

⊤ are covariates, ε is an error
variable and β = (β1, . . . , βp) is an unknown parameter vector. In this model the varying coefficients α1, . . . , αd are also
unknown and have different ‘smoothing variables’Uj.Wewriteα(U) = (α1(U1), . . . , αd(Ud))

⊤.We let both the joint density
of the covariate vector (X, Z,U) and the density of the error term ε be unknown. Our goal is to present a semiparametric
efficient estimator for β. We also discuss the estimation of the nonparametric coefficients αj.

The traditional linear regression model is very attractive due to its simplicity in estimation and interpretation. However,
it may not be adequate in many complex situations of modern statistics. By adding a nonparametric part into the regression
function, one can make the model more flexible while maintaining the simplicity of the linear model. To this end, many
authors suggested various semiparametric models. Speckman [13] and Yu et al. [17] considered partially linear additive
models. For partially linear additive models, the nonparametric part is added as a sum of univariate functions

d
j=1 αj(Uj).
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Comparing this and the PLVCM at (1.1), the latter takes into account nonlinear interaction effects among covariates while
the former does not.

Zhang et al. [18], Fan and Huang [6], and Ahmad et al. [1] studied a semiparametric model that is similar to (1.1). In
their model, all coefficient functions αj have a common smoothing variable, say U (or U in case it is univariate). We call this
model PLVCM-1. It is well known that PLVCM-1 suffers from the curse of dimensionality when the common covariateU is of
high-dimension. For this reason most studies have been focused on the case where the common smoothing variable is
univariate, see [18,6,15,11,20], among others. Assuming a common univariate smoothing variable across all coefficient
functions, one can only consider interaction effects among covariates in a very limited way. By allowing different coefficient
functions to have different smoothing variables as in PLVCM at (1.1), one can accommodate more interaction effects. Here,
we emphasize that fitting the nonparametric part of PLVCM is completely different from fitting that of PLVCM-1. While
the conventional kernel smoothing works for PLVCM-1, it does not give proper estimators for PLVCM since it produces
multivariate functions as estimators of the true αj, see the discussion in Section 1 of [9]. For PLVCM, it requires a relevant
‘projection’ technique to get proper estimators of αj, which makes the theory of semiparametric efficient estimation of the
true β quite different from, and much more challenging than the one for PLVCM-1.

Varying coefficientmodelswithout the linear effectsX⊤β havebeen studied extensively since [8].Most of themare for the
casewhere the coefficient functionsαj have a common smoothing variableU orU . Examples include [5,7,3,4]. For this type of
models, the conventional kernel smoothingworks, and there is no need of a projection technique. It suffers from the curse of
dimensionality, however, when U is of high-dimension. Recently, Yang et al. [16] studied the structured varying coefficient
model where different coefficient functions αj have different smoothing variables Uj as in the model (1.1). They applied the
marginal integration approach as a projection technique. The method does not overcome the curse of dimensionality for
a dimension d ≥ 5, even with the structure in the model, which is typical with the marginal integration method. Later,
Lee et al. [9] proposed a smooth backfitting technique that turns out to avoid the curse of dimensionality completely for all
dimension, and [10] further extended the study to a fairly general varying coefficient model.

In the next section, we derive the semiparametric information bound for the estimation of the true β in the model (1.1).
Roughly speaking, it refers to the minimal Fisher information among those for all ‘regular’ parametric submodels of (1.1).
We show that the semiparametric information bound for PLVCM is greater than the one for PLVCM-1, meaning that one
can estimate the true β more accurately in PLVCM than in PLVCM-1. In Section 3, we discuss semiparametric efficient
estimation of the true β that achieves the minimal asymptotic variance among all ‘regular’ estimators of the true β. The
efficient estimation requires an initial

√
n-consistent estimator of the trueβ, for a construction ofwhichwe take the profiling

technique of Severini andWong [12] and the smooth backfitting approach of Lee et al. [9]. We also show that our estimators
of the true αj enjoy the univariate optimal rate of convergence regardless of the dimension d. Some numerical evidences
that support our theoretical findings are given in Section 4. All technical details are provided in the Appendix.

2. Semiparametric Fisher information

We present the semiparametric information bound for the parameter β in the PLVCM at (1.1). Let β0 denote the true
coefficient vector of the regressorX,α0 the true coefficient function vector of the regressor Z, and g0 the true density function
of the error term ε, in the model (1.1). We assume that ε is independent of (X, Z,U). The true density belongs to the class
of all symmetric densities g that are absolutely continuous with respect to the Lebesgue measure, have a derivative g ′ and
finite Fisher information


(g ′)2/g < ∞.

To give an idea of the semiparametric information bound at the true parameter value (β0,α0, g0), let β → (αβ, gβ) be
an arbitrary smooth mapping that passes through (β0,α0, g0). For each smooth mapping, there corresponds a parametric
submodel {(β,αβ, gβ) : β ∈ Rp

}. One can obtain the Fisher information for each parametric submodel. Then, the semipara-
metric information bound equals theminimum of the parametric Fisher information bounds over all parametric submodels,
see [2] for a general theory of semiparametric efficiency.

To implement the above idea, define for 1 ≤ j ≤ p

δj =
∂

∂βj
αβ


β=β0

, γj =
∂

∂βj
log gβ


β=β0

.

Let ℓ(β,α, g; y, x, z,u) = log g(y− x⊤β − z⊤α(u)) denote the log-likelihood function at the observation (y, x, z,u). Here,
we omitted the logarithm of the density of (X, Z,U) since it does not involve (β,α). The score function for βj under a
submodel {(β,αβ, gβ) : β ∈ Rp

} with a tangent vector (δj, γj : 1 ≤ j ≤ p) is then given by

∂

∂βj
ℓ(β,αβ, gβ)


β=β0

=
∂

∂βj
ℓ(β,α0, g0)


β=β0

+
∂

∂α
l(β0,α, g0)


α=α0

(δj)+
∂

∂ log g
ℓ(β0,α0, g)


g=g0

(γj)

= −xj
g ′

0

g0
(ϵ)− z⊤δj(u)

g ′

0

g0
(ϵ)+ γj(ϵ), (2.1)

where ϵ = y− x⊤β0 − z⊤α0(u) and ∂ℓ/∂α|α=α0(δj) denotes the Fréchet differential of ℓ at α = α0 to the direction δj. Write
∆ = (−δ1, . . . ,−δp) and γ = (γ1, . . . , γp)

⊤. Then, the Fisher information matrix I(∆, γ) for this parametric submodel is
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