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a b s t r a c t

Sufficient dimension reduction (SDR) has recently received much attention due to its
promising performance under less stringentmodel assumptions.Wepropose a new class of
SDR approaches based on slicing conditional quantiles: quantile-slicing mean estimation
(QUME) and quantile-slicing variance estimation (QUVE). Quantile-slicing is particularly
useful when the quantile function is more efficient to capture underlying model structure
than the response itself, for example, when heteroscedasticity exists in a regression
context. Both simulated and real data analysis results demonstrate promising performance
of the proposed quantile-slicing SDR estimation methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

In high-dimensional data analysis, it is often a primary goal to reduce the dimensionality of data without losing much 2

information of interest. The well-known principal component analysis (PCA) is a canonical example. In the regression 3

context, PCA fails to exploit information about association between the response and predictors. Penalization-based variable 4

selectionmethods such as LASSO (Tibshirani, 1996) or SCAD (Fan and Li, 2001) can be regarded as another type of dimension 5

reduction. However, many variable selection methods rely on stringent parametric assumptions which may often be 6

unrealistic in practice. 7

Sufficient dimension reduction (SDR) has received much attention in statistical community. In a regression framework, 8

SDR reduces the predictor dimension by seeking a matrix B = (b1, . . . , bd) ∈ Rp×d that satisfies 9

Y ⊥ X|BTX, (1) 10

where Y and X = (X1, . . . , Xp)T are the univariate response and p-dimensional predictor, respectively. The SDR model (1) 11

is quite flexible since it does not impose any type of link function on the relationship between Y and X. Yet SDR preserves 12

information about association between Y and X, which differs from PCA. The space spanned by the columns of B, denoted 13

as span(B), is called dimension reduction subspace (DRS). DRS is not unique and thus not identifiable. So is B. To impose 14

identifiability, we define the central subspace, denoted by SY |X, as the intersection of all DRSs that satisfy (1). It is shown 15

that SY |X exists uniquely under mild conditions (Cook, 1996). We finally assume that span(B) = SY |X to make B (or more 16

* Corresponding author.
E-mail address: sjshin@korea.ac.kr (S.J. Shin).

https://doi.org/10.1016/j.jspi.2018.03.001
0378-3758/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jspi.2018.03.001
http://www.elsevier.com/locate/jspi
http://www.elsevier.com/locate/jspi
mailto:sjshin@korea.ac.kr
https://doi.org/10.1016/j.jspi.2018.03.001


JSPI: 5635

Please cite this article in press as: Kim H., et al., Quantile-slicing estimation for dimension reduction in regression. J. Statist. Plann. Inference (2018),
https://doi.org/10.1016/j.jspi.2018.03.001.

2 H. Kim et al. / Journal of Statistical Planning and Inference xx (xxxx) xxx–xxx

precisely span(B)) an identifiable target in SDR. The dimension of SY |X, d is called the structural dimension and is another1

important quantity of interest to be estimated from the data.2

Since the seminalwork of sliced inverse regression (SIR, Li, 1991) and sliced average variance estimation (SAVE, Cook and3

Weisberg, 1991) both of which are based on inverse moments, a variety of SDR methods have been developed. Li andWang4

(2007) proposed the directional regression based on empirical directions of Y that generalizes the idea of inverse-moment.5

The inverse-moment-based methods often require to slice the support of Y , and the selection of slices may affect the finite6

sample performance. To tackle this issue, Cook and Zhang (2014) proposed a fusing method and Zhu et al. (2010) develop7

a cumulative slicing estimation. Li et al. (2005) proposed an alternative method for SDR called contour regression, and this8

motivates the principal support vector machine (Li et al., 2011), a unified framework to handle both linear and nonlinear9

SDR.10

The SDR model (1) can be viewed as a semi-parametric model for the conditional distribution function of Y given X,11

denoted by Fy|x. Xia et al. (2002) proposed the minimum average variance estimation (MAVE) which recovers SY |X by12

estimating the conditional expectation, E(Y |X) =
∫
ydFy|x which is the same as E(Y |BTX) under (1). Motivated by MAVE,13

related variants have been developed. See for example, Xia (2007), Wang and Xia (2008), and Yin et al. (2011). Zhu and Zeng14

(2006) proposed an estimator of SY |X by estimating the gradient of Fy|x using the Fourier transformation. Kong and Xia (2014)15

exploited the gradient of quantile function, instead of Fy|x, and proposed the adaptive composite quantile outer product of16

gradients method. Ma and Zhu (2012) derived the space of influence functions of the estimator of SY |X, and Ma and Zhu17

(2013) further proposed an efficient estimator of SY |X and established its asymptotic properties. Recently, Huang and Chiang18

(2017) proposed an alternative semi-parametric estimator for SDR that can estimate B and d simultaneously.19

In practice, data often display heteroscedastic variancewhich can be of scientific importance. Note that the SDRmodel (1)20

requires the conditional independence only. In principal it has no difficulty to encompass underlying heteroscedasticity in21

the data. However, most of SDRmethods are designed to focus primarily on conditional mean relation and can be inefficient22

to identify such heteroscedasticity, as illustrated by a toy example coming up next. See Kong and Xia (2014) andWang et al.23

(2018) for difficulties in SDR with heteroscedasticity.24

The quantile regression is a popular alternative to the conventional mean regression when homoscedastic error assump-25

tion is violated. The quantile regression seeks the τ th conditional quantile of Y |X denoted by fτ (X) that satisfies26

P(Y ≤ fτ (X)|X) = τ27

for a given quantile level τ ∈ (0, 1). Notice that the conditional distribution of Y |X possesses all the information about Y .28

By stacking together all the conditional quantile functions of Y |X at different quantile levels, we define QX ≡ QX(τ ) = fτ (X)29

as a function of the quantile level τ . The stacked conditional quantile function QX contains complete information about the30

conditional distribution of Y |X.31

It can be shown that the stacked conditional quantile functionQX contains same amount of information on SY |X as Y does.32

Namely, SY |X = SQX|X where SQX|X denotes the central subspace for the ‘‘regression’’ of QX on X and is defined accordingly.33

This motivates us to develop a new SDR approach that slices conditional quantiles of Y |X instead of the response Y itself to34

estimate SY |X. Finally two versions of estimators based on quantile-slicing are developed: QUantile-slicing Mean Estimation35

(QUME) and QUantile-slicing Variance Estimation (QUVE).36

In practice, QX is an unknown quantity and should be inferred from the data. Toward this, we propose to use the kernel37

quantile regression (KQR, Takeuchi et al., 2006; Li et al., 2007). The KQR is a flexible nonparametric method showing38

promising performance in high-dimensional data due to the use of the kernel trick (Zhang, 2002). The KQR solution as a39

function of τ is piecewise linear in τ ∈ (0, 1) (Takeuchi et al., 2009). This enables us to estimate the stacked quantile function40

QX completely from a finite sample.41

As a simple illustration, we consider a toy example of simple regression with heteroscedastic error: Y = X1 + exp(X2)ϵ,42

where X1, X2, X3
i.i.d.
∼ N(0, 1) and ϵ ∼ N(0, 0.22) are independent of each other. Notice that B = (e1, e2) where e1 = (1, 0, 0)T43

and e2 = (0, 1, 0)T and hence X1 and X2 are the two sufficient predictors, X1 for mean and X2 for variance of the response.44

We apply SIR and QUME to a random sample of size 100 generated from this simple model. Fig. 1 depicts the estimated SY |X45

by SIR (red plane with a finer mesh) and QUME (back plane with a coarser mesh) on the three dimensional predictor space.46

The table at the bottom-right corner reports the distance between true and estimated SY |X in terms of the criterion defined47

in (10). One can see that QUME outperforms SIR for identifying SY |X. In particular, SIR shows insufficient accuracy to identify48

the direction associated with X2 that controls variance of the response.49

The rest of article is organized as follows. In Section 2, we first show the equivalence between SY |X and SQX|X, and then50

propose two versions of quantile-slicing scheme, QUME and QUVE. In Section 3, the finite-sample implementation of QUME51

and QUVE via solution paths of the KQR is described in details. Additional issues including estimation of the structural52

dimension and tuning parameter selection in KQR are discussed in Section 4. Illustration to both simulated and real data53

are presented in Sections 5 and 6, respectively. Concluding remarks are in Section 7. All the proofs are relegated to the54

Appendix.55

2. Quantile-slicing estimation56

Slicing scheme has been regarded as a standard approach in SDR. We propose a new SDR method based on slicing57

conditional quantiles instead of the observed response. We first establish that QX contains the same amount of information58

as Y for SY |X, and then propose two versions of the quantile-slicing schemes: QUME and QUVE.59
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