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a b s t r a c t

Given a linear regression model and an experimental region for the independent variable,
the problem of finding an optimal approximate design calls for minimizing a convex
optimality criterion over a convex set of information matrices of feasible approximate
designs. For numerical solution pure gradient methods are often used by design theorists,
as vertex direction, vertex exchange, multiplicative algorithms, or combinations hereof.
These methods have two major deficiencies: a slow convergence rate after a quick but
rough approximation to the optimum, and often a large support of the obtained nearly
optimal design. The latter feature is related to the fact that the methods optimize in the
space of design measures which is usually of high or even infinite dimension, whereas
the dimension of the information matrices is often small or moderate. For such situa-
tions a quasi-Newton method is revisited which was originally established by Gaffke &
Heiligers (1996). In the present paper new possibilities of its application are demonstrated.
The algorithm optimizes in matrix space. It shows a good global and an excellent local
convergence behavior resulting in an accurate approximation of the optimum. A crucial
subroutine solves convex quadratic minimization over the set of information matrices
via repeated linear minimization over that set, providing thus the quasi-Newton step
of the algorithm. This may also be of interest as a tool for computing an approximate
design from a given information matrix and such that the support size of the design
keeps Carathéodory’s bound. Illustrations are given for D- and I-optimality in particular
multivariate random coefficient regressionmodels and for T-optimal discriminating design
in univariate polynomialmodels.Moreover, the behavior of the algorithm is tested for cases
of larger dimensions: D- and I-optimal design for a third order polynomial model in several
variables on a discretized cube.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and basic notation 1

As a general basis for optimal approximate linear regression design we take the following situation. Let X denote the 2

experimental region for the independent variable x. To each x ∈ X there is given a nonnegative definite p × p matrix M(x), 3

which we call the elementary information matrix of the design point x. A standard situation is M(x) = f (x)f (x)T for all 4

x ∈ X , where f is a given Rp-valued function on X defining a univariate linear regression model. Situations different from 5

the standard one arise, e. g., in multivariate linear regression (see Section 4), in stratified design (see Harman, 2014) or in 6

size- and cost-constrained design (see Harman and Benkova, 2016). The set
{
M(x) : x ∈ X

}
of elementary information 7

matrices is assumed to be compact. 8
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An approximate design or design measure ξ is a discrete probability distribution with finite support on the experimental1

region X ,2

ξ =

(
x1 x2 . . . xr
w1 w2 . . . wr

)
,3

where r ∈ N, xj ∈ X all distinct, wj > 0,
r∑

j=1

wj = 1 . (1.1)4

The set supp(ξ ) = {x1, . . . , xr} is called the support of ξ . Note that the (finite) size r is not fixed. Different designs may have5

different numbers of support points.6

The information matrices of designs come linearly from the family of elementary information matricesM(x) assigned to7

the points x ∈ X . The information matrix of a design ξ from (1.1) is given by8

M(ξ ) =

r∑
j=1

wj M(xj) . (1.2)9

Clearly, M(ξ ) is a nonnegative definite p × p matrix which may be nonsingular (hence positive definite) or singular. Often,10

when dealing with design optimality, positive definiteness of the information matrix is required and is thus imposed as a11

feasibility condition on a design.Wewill employ amore general feasibility condition possibly allowing designswith singular12

information matrices (see below). But throughout we assume that there exist designs with positive definite information13

matrices. Denote by M the set of all information matrices of approximate designs,14

M =
{
M(ξ ) : ξ an approximate design on X

}
. (1.3)15

By definition (1.2) M coincides with the convex hull of the set of all elementary information matrices,16

M = Conv
{
M(x) : x ∈ X

}
, (1.4)17

where ‘Conv’ stands for ‘convex hull’. The assumption of existence of designs with positive definite informationmatrices can18

be stated as19

M ∩ PD(p) ̸= ∅ , (1.5)20

where PD(p) denotes the set of all positive definite p × p matrices. Also, we denote by NND(p) the set of all nonnegative21

definite p × p matrices.22

The sets of matrices introduced so far are covered by the linear space SYM(p) of all symmetric p × p matrices, which is23

endowed with the scalar product24 ⟨
A, B

⟩
= tr(AB) for all A, B ∈ SYM(p),25

where tr(C) denotes the trace of a p× pmatrix C . Obviously, PD(p) is an open subset of SYM(p) and a convex cone. The latter26

means that it is closed under addition and under multiplication by positive scalars. More generally, let A ⊆ SYM(p) be a27

convex cone such that PD(p) ⊆ A. Note that the latter inclusion implies the inclusion NND(p) ⊆ cl(A) and in particular28

M ⊆ cl(A) where cl(A) denotes the closure of A. We will refer to A as a ‘feasibility cone’. An optimality criterion is a29

real-valued convex function Φ on some feasibility cone A. A design ξ ∗ is called Φ-optimal ifM(ξ ∗) ∈ A and30

Φ
(
M(ξ ∗)

)
≤ Φ

(
M(ξ )

)
for all ξ with M(ξ ) ∈ A. (1.6)31

Popular criteria on A = PD(p) are the D-criterion ΦD(M) =
(
det(M)

)−1/p, and an L-criterion ΦL(M) = tr
(
WM−1

)
with32

a given weight matrix W ∈ PD(p). The popular A-criterion is a special L-criterion with W = Ip the p-dimensional identity33

matrix. We will employ another special L-criterion which is called an I-criterion since it expresses some integral average34

(w.r.t. Lebesgue measure) of variances of estimated responses. An example of a criterion allowing (certain) singular matrix35

arguments is given by a ‘singular’ L-criterion, i. e. the weight matrix W ∈ NND(p) \ {0} is singular and ΦL(M) = tr
(
WM−

)
36

for all M ∈ A, where M− denotes any generalized inverse of M , i.e., any p × p matrix satisfying the equation MM−M = M ,37

see Rao and Rao (2001), Ch. 8.2. The feasibility cone is given by A =
{
M ∈ NND(p) : range(W ) ⊆ range(M)

}
. In particular,38

for W = ccT with a fixed nonzero vector c ∈ Rp the (singular) L-criterion is called c-criterion and can be written as39

Φc(M) = cTM−c on the feasibility cone A =
{
M ∈ NND(p) : c ∈ range(M)

}
.40

The class of T-criteria was introduced by Atkinson and Fedorov (1975) for discriminating between two models. Here we41

restrict to the case of two nested linear models. Let p be the dimension of the larger model and p − s the dimension of the42

smaller model, where 1 ≤ s < p. Accordingly, we partition anyM ∈ SYM(p) as43

M =

[
M11 M12

MT
12 M22

]
, with M11 (p − s) × (p − s), M22 s × s, (1.7)44
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