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a b s t r a c t

Complex Ornstein–Uhlenbeck (OU) processes have various applications in statistical mod-
elling. They play role e.g. in the description of themotion of a charged test particle in a con-
stant magnetic field or in the study of rotating waves in time-dependent reaction diffusion
systems,whereas Kolmogorov used such a process tomodel the so-called Chandlerwobble,
small deviation in the Earth’s axis of rotation. In these applications parameter estimation
and model fitting is based on discrete observations of the underlying stochastic process,
however, the accuracy of the estimation strongly depend on the observation points.

This paper studies the properties of D-optimal designs for estimating the parameters
of a complex OU process with a trend. In special situations we show that in contrast with
the case of the classical real OU process, a D-optimal design exists not only for the trend
parameter, but also for joint estimation of the covariance parameters, moreover, these
optimal designs are equidistant.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Random processes have various applications in statistical modelling in different areas of science such as physics,
chemistry, biology or finance, where one usually cannot observe continuous trajectories. In these situations parameter
estimation and model fitting is based on discrete observations of the underlying stochastic process, however, the accuracy
of the results strongly depend on the observation points. The theory of optimal experimental designs, dating back to the
late 50s of the twentieth century (see e.g. Hoel, 1958; Kiefer, 1959), deals with finding design sets ξ = {t1, t2, . . . , tn} of
distinct time points (or locations in space) where the process under study is observed, which are optimal according to some
previously specified criterion (Müller, 2007). In parameter estimation problems the most popular criteria are based on the
Fisher information matrix (FIM) of the observations. D-, E- and T-optimal designs maximize the determinant, the smallest
eigenvalue and the trace of the FIM, respectively, an A-optimal design minimizes the trace of the inverse of the FIM (for an
overview see Pukelsheim, 1993), whereas K-optimality refers to the minimization of the condition number of the FIM (see
e.g. Ye and Zhou, 2013; Baran, 2017). In the last decades information based criteria have intensively been studied both in
the uncorrelated setup (see e.g. Silvey, 1980) and in the more difficult correlated situation (Dette et al., 2015, 2016).

In the present paper we derive D-optimal designs for parameter estimation of complex (or vector) Ornstein–Uhlenbeck
(OU) processeswith trend (see e.g. Arató, 1982), defined in detail in Section 2. A complexOUprocess describes e.g. themotion
of a charged test particle in a constant magnetic field (Balescu, 1997), it is used in the description of the rotation of a planar
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polymer (Vakeroudis et al., 2011) or in the study of rotating waves in time-dependent reaction diffusion systems (Beyn
and Lorenz, 2008; Otten, 2015), and it also has several applications in financial mathematics (see e.g. Barndorff-Nielsen and
Shephard, 2001). Further, Kolmogorov proposed to model the so-called Chandler wobble, small deviation in the Earth’s axis
of rotation (Lambeck, 1980), by the model

Z(t) = Z1(t) + iZ2(t) = mei2π t + Y (t), t > 0, (1.1)

where Z1(t) and Z2(t) are the coordinates of the deviation of the instantaneous pole from the North Pole and Y (t) is a complex
OU process (Arató et al., 1962). We remark that most of our results correspond to the special case of a constant trend,
however, even this simple situation gives a nice insight into the behavior of D-optimal designs for complex OU processes,
highlighting the differences between the real and complex models.

Note that the properties of D-optimal designs for classical one-dimensional OU processes have already investigated
by Kiseľák and Stehlík (2008) and later by Zagoraiou and Baldi Antognini (2009), where the authors proved that there is no
D-optimal design for estimating the covariance parameter, whereas the D-optimal design for trend estimation is equidistant
and larger distances resulting inmore information. Later these resultswere generalized forOU sheets under various sampling
schemes (Baran and Stehlík, 2015; Baran et al., 2013, 2015).

The paper is organized as follows. In Section 2 we introduce the model to be studied, Section 3 contains our results on
D-optimal designs, whereas in Section 4 some applications are presented. The paper ends with the concluding remarks of
Section 4. To maintain the continuity of the explanation, the proofs are given in the Appendix.

2. Complex Ornstein–Uhlenbeck process with a trend

Consider the complex stochastic process Z(t) = Z1(t) + iZ2(t), defined as

Z(t) = mf (t) + Y (t), t ≥ 0, (2.1)

with design points taken from the non-negative half-line R+, where m = m1 + im2, m1,m2 ∈ R, f (t) = f1(t) + if2(t) with
f1(t), f2(t) : R+ ↦→ R and Y (t) = Y1(t) + iY2(t), t ≥ 0, is a complex valued stationary OU process. The process Y (t) can be
defined by the stochastic differential equation (SDE)

dY (t) = −γ Y (t)dt + σdW(t), Y (0) = ξ, (2.2)

where γ = λ − iω with λ > 0, ω ∈ R, σ > 0, W(t) = W1(t) + iW2(t), t ≥ 0, is a standard complex Brownian motion,
that isW1(t) andW2(t) are independent standard Brownian motions, and ξ = ξ1 + iξ2, where ξ1 and ξ2 are centered normal
random variables that are chosen according to stationarity (Arató, 1982).

Instead of the complex process Y (t) defined by (2.2) one can consider the two-dimensional real valued stationary OU
process

(
Y1(t), Y2(t)

)⊤ defined by the SDE[
dY1(t)
dY2(t)

]
= A

[
Y1(t)
Y2(t)

]
dt + σ

[
dW1(t)
dW2(t)

]
, where A :=

[
−λ −ω

ω −λ

]
. (2.3)

We remark that in physics (2.3) is called A-Langevin equation, see e.g. Balescu (1997). If
(
Y1(t), Y2(t)

)⊤ satisfies (2.3) then
Y1(t) + iY2(t) is a complex OU process which solves (2.2), and conversely, the real and imaginary parts of a complex OU
process form a two-dimensional real OU process satisfying (2.3). Obviously, EY1(t) = EY2(t) = 0, whereas the covariance
matrix function of the process

(
Y1(t), Y2(t)

)⊤ is given by

R(τ ) := E

[
Y1(t + τ )
Y2(t + τ )

][
Y1(t)
Y2(t)

]⊤

=
σ 2

2λ
eAτ =

σ 2

2λ
e−λτ

[
cos(ωτ ) − sin(ωτ )
sin(ωτ ) cos(ωτ )

]
, τ ≥ 0. (2.4)

This results in a complex covariance function of the complex OU process Y (t) defined by (2.2) of the form

C(τ ) := EY (t + τ )Y (t) =
σ 2

λ
e−λτ

(
cos(ωτ ) + i sin(ωτ )

)
, τ ≥ 0,

behaving like a damped oscillation with frequency ω.
In the present study the damping parameter λ, frequencyω and standard deviation σ are assumed to be known. However,

a valuable direction for future researchwill be the investigation ofmodels where these parameters should also be estimated.
Note that the estimation of σ can easily be done on the basis of a single realization of the complex process, see e.g. Arató
(1982, Chapter 4). Now, without loss of generality, one can set the variances of Y1(t) and Y2(t) to be equal to one, that is
σ 2/(2λ) = 1, which reduces R(τ ) to a correlation matrix function. Further results on the maximum-likelihood estimation
of the covariance parameters can be found e.g. in Arató et al. (1999).
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