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a b s t r a c t

Through investigating a recently introduced sufficient dimension reduction method with
Hellinger index, this article shows that the generalized Hellinger index unifies three
existing dimension reduction methods: kernel discriminant analysis, sliced regression
and density minimum average variance estimation, with certain weight functions. The
Hellinger index is then extended to regression models with multivariate responses. Fur-
thermore, new algorithms based on Hellinger index to estimate the dual central subspaces
and to enable variable selection for sparse models are proposed. Simulation studies and a
real data analysis demonstrate the efficacy of the proposed approaches.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Sufficient dimension reduction (SDR) aims at estimating a low-dimensional subspace of a predictor vectorX ∈ Rp without
loss of information on the conditional distribution of the response variable Y given X , andwithout pre-specifying amodel for
any of Y |X or X |Y . This subspace is then called a dimension reduction subspace for the regression of Y on X . The intersection
of all such subspaces, if itself is a dimension reduction subspace, is called the central subspace (CS) denoted by SY |X . Its
dimension dY |X is called the structural dimension. We refer readers to Cook (1998a) for more details.

Since sliced inverse regression (SIR; Li, 1991) and sliced average variance estimation (SAVE; Cook andWeisberg, 1991) were
introduced, much attention has been drawn to this area over the past two decades. All proposedmethods can be categorized
into three groups according to the distribution that is focused on: the inverse regression approach, the forward regression
approach and the joint approach. The inverse regression approach focuses on the inverse conditional distribution of X |Y .
Alongside SIR and SAVE, principal Hessian directions (PHD; Li, 1992, 2000; Cook, 1998b), the kth moment estimation (Yin and
Cook, 2002, 2003), inverse regression (Cook and Ni, 2005) and contour regression (Li et al., 2005) are well-known methods
in this category. They are computationally inexpensive, but require either or both of the linearity and constant covariance
conditions (Cook, 1998a). The forward regression approach in which the conditional distribution of Y |X is the object of
inference includes average derivative estimation (Härdle and Stoker, 1989; Samarov, 1993), the structure adaptive method
(Hristache et al., 2001), minimum average variance estimation (MAVE; Xia et al., 2002), sliced regression (SR; Wang and Xia,
2008) and semiparametric approaches of Ma and Zhu (2012, 2013a, b, 2014). These methods do not require any strong
probabilistic assumptions, however, as either sample size or the number of predictors increases the computational burden
increases dramatically due to the use of smoothing. The joint approach includes Kullback–Leibler distance (Yin and Cook,
2005; Yin et al., 2008) and Fourier estimation (Zhu and Zeng, 2006), which may be flexibly regarded as either inverse or
forward approaches.
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Recently, Wang et al. (2015) proposed a dimension reduction method through the Hellinger integral to estimate the
CS. The assumptions are very mild: (a) SY |X exists and (b) a finiteness condition, so that the Hellinger integral is always
defined. This Hellinger integral approach is computationally efficient and achieves exhaustive estimation of CS. However,
Wang et al. (2015) considered only the situation when the response variable is univariate. The innovations of this paper
begin with showing that the generalized Hellinger index unifies kernel discriminant analysis (Hernández and Velilla, 2005),
sliced regression (Wang and Xia, 2008) and density minimum average variance estimation (Xia, 2007), each being equivalent
to adopting suitable weight functions. Then, the Hellinger index is extended to estimate the CS for multivariate regression.
We also propose a new algorithm via Hellinger index to estimate the dual central subspaces (DCS), firstly studied by Iaci
et al. (2016), where both the CS of Y |X and CS of X |Y are of interests. Finally, the shrinkage estimation procedure proposed
by Li and Yin (2008) is incorporated into the Hellinger index in this paper, which enables variable selection and improves
the interpretability and accuracy of estimated directions.

The rest of this article is organized as follows. Section 2 briefly reviews the Hellinger index for sufficient dimension
reduction. The unification of three existing methods is detailed in Section 3. Section 4 introduces the extension of Hellinger
index to estimate CS formultivariate responses. Section 5 describes an efficient approach throughHellinger index to estimate
the dual central subspaces. A sparse version of Hellinger method that enables variable selection is discussed in Section 6.
Simulated examples and a real data analysis are presented in Sections 7 and 8, respectively. Finally, Section 9 concludes the
paper with a short discussion.

2. Review on Hellinger index for SDR

Throughout the paper, we assume that the response variable Y and the p× 1 predictor vector X have a joint distribution
F(X,Y ) with support Ω . Let {(xi, yi), i = 1, . . . , n} be random samples from (X, Y ). The response Y may be continuous or
discrete. Traditionally,X is assumed to be continuous in SDR research andwe follow this in the paper. The symbol p(·) denotes
a probability density function, a probabilitymass function, or amixture of the two, whose argument defines implicitly which
distribution is referred to. The notation

∫
is used to denote an integral in the usual sense, a summation, or a mixture of the

two. In all cases, p(x, y) = p(x|y)p(y) where p(x, y), p(x|y) and p(y) refer to the joint, conditional and marginal distributions
of (X, Y ), X |Y and Y , respectively.

Let u, u1, u2, . . . denote fixed matrices with p rows and full column rank d. The Hellinger integral of order two (Vajda,
1989; Liese and Vajda, 2006) is defined as H(u) = EX,Y

{
R(Y ; uTX)

}
, where R(y; uT x) is the dependence ratio, and

R(y; uT x) =
p(y, uT x)
p(y)p(uT x)

=
p(y|uT x)
p(y)

=
p(uT x|y)
p(uT x)

. (1)

The expectation is over the joint distribution of X and Y , which can be emphasized by writing H(u) fully as H(u; F(X,Y )).
The joint distribution F(X,Y ) for continuous Y or F(X |Y ) for discrete Y is assumed to be absolute continuous such thatH(u) is

finite for allu, and thusHellinger integrals are always defined.Wang et al. (2015) established thatH(u) as a naturalmeasure of
the regression information Y |X is contained in the spaceS = span(u). LetH(S) = H(u), andS1 = span(u1) andS2 = span(u2)
are two subspaces of Rp meeting only at the origin, then

H(S1 ⊕ S2) − H(S1) ≥ 0,

where the equality holds if and only if Y is conditionally independent of uT
2X given uT

1X .
For a known dY |X , maximizing H(u) over a Grassmann manifold UdY |X , where UdY |X = {all p × dY |X matrices u with

uTu = IdY |X }, recovers a basis of SY |X . To avoid the curse of dimensionality in estimating the probability densities, Wang et al.
(2015) proposed to approximate the dependence ratiowith local linearization, and then to aggregate the principal directions
to form an estimate of SY |X .

3. Unification of three existing methods

In this section, we show that the Hellinger approach unifies three existing SDR methods, kernel discriminant analysis
(Hernández and Velilla, 2005), density minimum average variance estimation (Xia, 2007) and sliced regression (Wang and Xia,
2008). Before presenting the main result, we briefly introduce these three approaches.

Hernández and Velilla (2005) proposed a kernel discriminant analysis (KDA) approach in classification setting, where
the response variable Y represents the class labels. Suppose Y takes values in a countable index set Y ⊂ R, with
probability p(y) = p(Y = y) > 0 and

∑
y∈Yp(y) = 1. The KDA approach is based upon the following functional

T (X) =
∑

y∈YVarX
{
p(y|X)

}
, which measures the aggregate separation among the conditional densities p(x|Y = y) for

all y ∈ Y , where VarX denotes the variance with respect to X . Clearly, the larger the T (X), the better separation among all
classes in Y . When the structural dimension dY |X = d is known, a basis for the central subspace SY |X can be estimated as

u∗
= argmax

u∈Ud
T (uTX) = argmax

u∈Ud

∑
y∈Y

VarX
{
p(Y = y|uTX)

}
, (2)
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