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a b s t r a c t

By the modified directed likelihood, higher order accurate confidence limits for a scalar
parameter are obtained from the likelihood. They are conveniently described in terms of a
confidence distribution, that is a sample dependent distribution function on the parameter
space. In this paper we explore a different route to accurate confidence limits via tail-
symmetric confidence curves, that is curves that describe equal tailed intervals at any level.
Instead of modifying the directed likelihood, we consider inversion of the log-likelihood
ratio when evaluated at the median of the maximum likelihood estimator. This is shown
to provide equal tailed intervals, and thus an exact confidence distribution, to the third-
order of approximation in regular one-dimensional models. Median bias correction also
provides an alternative approximation to the modified directed likelihood which holds up
to the second order in exponential families.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The level of reported confidence intervals are most often 95%, with equal probability of missing the target at both sides.
Sometimes other levels are used, but rarely are several intervals at their different levels reported in applied work. Instead
of only reporting one confidence interval we suggest to report a family of nested confidence intervals for parameters of
primary interest. The family is indexed by the confidence level 1 − α for α ∈ (0, 1) and is conveniently represented by
what is called a confidence curve, a quantity introduced by Birnbaum (1961) to give a complete picture of the estimation
uncertainty. As an example, take θ̂ ∼ N(θ, σ 2) for σ known. It yields the curve cc(θ ) = |1 − 2Φ((θ − θ̂ )/σ )| for Φ(z) the
cumulative distribution function of a N(0, 1). This is a confidence curve since, for all α ∈ (0, 1), {θ : cc(θ ) ≤ 1 − α} =

(θ̂ + σΦ−1(α/2), θ̂ + σΦ−1(1 − α/2)) is the respective confidence interval of level 1 − α. In the example the confidence
curve has its minimum at θ̂ which is a point estimate of θ . The normal confidence curve is tail-symmetric, i.e. the probability
of missing the parameter to the left equals that to the right and is α/2 at level 1 − α. A tail-symmetric confidence curve
represents uniquely a confidence distribution, that is confidence curves that describe upper confidence limits. Confidence
distribution is a term coined by Cox (1958) and formally defined in Schweder and Hjort (2002). For scalar parameters
the fiducial distributions developed by Fisher (1930) are confidence distributions. Neyman (1934) saw that the fiducial
distribution leads to confidence intervals. Cox (2013) sees confidence distributions as ‘‘simple and interpretable summaries
of what can reasonably be learned from the data (and an assumedmodel)’’. Confidence distributions are reviewed by Xie and
Singh (2013), and more broadly and with more emphasis on confidence curves by Schweder and Hjort (2016). In location
models and other simple models the confidence distribution is obtained from pivots, e.g. the normal pivot (θ̂ − θ )/σ in the
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above example. A canonical pivot is C(θ ) = C(θ; θ̂ ) = 1−G(θ̂ , θ ) where G(y, θ ) = P(θ̂ ≤ y; θ ) is the distribution function of
the maximum likelihood estimator θ̂ , assumed to be absolutely continuous with respect to the Lebesgue measure and non-
increasing in θ . See Section 2 for precise definitions and notation. The confidence distribution C(θ ) is a canonical pivot in the
sense of being uniformly distributed on the unit interval when θ̂ is distributed according to θ . When θ̂ is a sufficient statistic
with monotone likelihood ratio, C(θ ) is also optimal in the Neyman–Pearson sense, that is it describes smaller confidence
intervals at a given level when compared to any other confidence distribution for the parameter θ (Schweder andHjort, 2016
Section 5.4). An equal tailed confidence curve is readily obtained from C(θ ) by cc(θ ) = |1 − 2C(θ )|.

In this paperwe shall be concernedwith confidence curves obtained from the log-likelihood ratiow(θ ), andwe shall study
the properties of median bias correction. Median bias correction of a confidence curve, proposed by Schweder (2007), is a
method to make the resulting confidence curve approximately tail-symmetric. In the normal examplew(θ ) = ((θ̂ − θ )/σ )2
and the confidence curve mentioned above is also given by cc(θ ) = Q (w(θ )) where Q is the cumulative chi-square
distribution functionwith one degree of freedom. This confidence curve is tail-symmetric, as mentioned, and the confidence
interval of level 0 is the single point θ̂ which thus hasmedian θ and is said to bemedian unbiased. In generalw(θ ) hits zero at
themaximum likelihood estimator, whichmight not bemedian unbiased. Let θ̂ havemedian b(θ ). Themedian bias corrected
confidence curve is the confidence curve of the parameter b(θ ). The idea is to probability transform the bias corrected log
likelihood ratiow∗(θ ) = w(b(θ )) rather thanw(θ ). With F∗(y; θ ) denoting the sampling distribution ofw∗(θ ) when the data
is distributed according to θ , the bias corrected confidence curve is cc∗(θ ) = F∗(w∗(θ ); θ ). Since arg min(cc∗(θ )) = b−1(θ̂ ) is
median unbiased, the level set at α = 0 is typically the single point b−1(θ̂ ) and, by continuity, cc∗(θ ) is close to be equal
tailed at low levels. We undertake a theoretical study of the asymptotic properties of cc∗(θ ) by showing that cc∗(θ ) is
third-order tail-symmetric for (θ, θ̂ ) in the normal deviation range in two important classes of parametric models with
parameter dimension one. First, we consider parametric models that belong to the Efron’s normal transformation family
(Efron, 1982). Then, we extend the result to regular one dimensional exponential families, wherewe also discuss the relation
between median bias corrected and modified directed likelihood of Barndorff-Nielsen (1986), thus providing an alternative
approximation to the latter. Since median bias correction works so well in these cases, it is reasonable to expect the method
to work well quite generally. However, when a canonical confidence distribution is available, as in the exponential family
models, we do of course not advocate to use median bias correction rather than using the canonical confidence distribution.

The rest of the paper is organized as follows. In Section 2, we recast confidence estimation in terms of confidence curves
and introduce the notation we use in the sequel. We also define the confidence curve based on inverting the median bias
corrected version of the log-likelihood ratio. In Sections 3 and 4, we investigate its asymptotic properties in terms of tail
symmetry in the Efron’s normal transformation family and in one dimensional exponential families, respectively. Finally,
in Section 5 some concluding remarks and lines of future research are presented, together with an example that provides
a preliminary illustration of the use of median bias correction in the presence of nuisance parameters. Some proofs and a
technical lemma are deferred to Appendix.

2. Likelihood-based confidence curves

Let X = (X1, . . . , Xn) be a continuous random sample with density f (x; θ ) depending on a real parameter θ ∈ Θ ⊂ R
and let P( · ; θ ) indicate probabilities calculated under f (x; θ ). The log-likelihood is ℓ(θ ) = ℓ(θ; x) = log f (x; θ ), and the
log-likelihood ratio is w(θ ) = w(θ; x) = 2(ℓ(θ̂; x) − ℓ(θ; x)), where θ̂ is the maximum likelihood estimate. We drop the
second argument in sample-dependent functions like w and ℓ whenever it is clear from the context whether we refer to a
random quantity or to its observed value. Unless otherwise specified, all asymptotic approximations are for n → ∞ and
stochastic term Op(·) refers to convergence in probability with respect to f (x; θ ). We assume that the model is sufficiently
regular for the validity of first order asymptotic theory, cfr. Barndorff-Nielsen and Cox (1994, Chapter 3). In particular,w(θ )
converges in distribution to a chi-squared random variable, hence, by contouring w(θ ) with respect to this distribution we
obtain intervals of θ values given by the level sets for the curve Q (w(θ )) where Q is the distribution function of the chi-
squared distribution with 1 degree of freedom. This curve depends on the sample x and has its minimum at θ̂ . However its
level sets are not in general exact confidence intervals since the chi-squared approximation for the distribution of w(θ ) is
valid only for n large and the coverage probabilities equal the nominal levels only in the limit. As a consequence, Q (w(θ )) is
not uniformly distributed on the unit interval under P( · ; θ ), a property we require for a regular confidence curve as spelled
in the following definition.

Definition 1. A function cc : Θ × Rn
→ [0, 1) is a regular confidence curve when minθ cc(θ; x) = 0, the level sets

{θ : cc(θ; x) ≤ 1 − α} are finite intervals for all α ∈ (0, 1), and cc(θ; X) ∼ Unif(0, 1) under P( · ; θ ).

Confidence curves might be defined for parameters of higher dimension and also for irregular curves that even might
have more than one local minimum or might have infinite level sets for α < 1, see Schweder and Hjort (2016, Section
4.6). Note that, under Definition 1, I = {θ : cc(θ; x) ≤ 1 − α} is an exact confidence region of level 1 − α since
P(I ∋ θ; θ ) = P(cc(θ; X) ≤ 1− α; θ ) = 1− α. Among confidence curves, of special importance are confidence distributions,
which are confidence curves that describe upper confidence limits. The definition is as follows.

Definition 2. A function C : Θ ×Rn
→ [0, 1) is a confidence distribution when C(·; x) is a cumulative distribution function

in θ for all x and C(θ; X) ∼ Unif(0, 1) under P( · ; θ ).
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