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Abstract

The axiomatic foundation of probability theory presented by Kolmogorov
has been the basis of modern theory for probability and statistics. In certain
applications it is, however, necessary or convenient to allow improper (un-
bounded) distributions, which is often done without a theoretical foundation.
The paper reviews a recent theory which includes improper distributions, and
which is related to Renyi’s theory of conditional probability spaces. It is in
particular demonstrated how the theory leads to simple explanations of ap-
parent paradoxes known from the Bayesian literature. Several examples from
statistical practice with improper distributions are discussed in light of the
given theoretical results, which also include a recent theory of convergence
of proper distributions to improper ones.
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1. Introduction

Bayes’ formula forms the basis of Bayesian statistics. Suppose a param-
eter θ is of interest, and that we have data x which is supposed to give
information about θ. The idea of Bayesian inference is to first express one’s
prior knowledge (some would call it uncertainty) of θ in the form of a prior
distribution, commonly given in the form of a density function π(θ), and then
combine this knowledge with the new knowledge provided by the data x. The
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