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a b s t r a c t

The inferential model (IM) approach, like fiducial and its generalizations, depends on
a representation of the data-generating process. Here, a particular variation on the
IM construction is considered, one based on generalized associations. The resulting
generalized IM is more flexible in that it does not require a complete specification of
the data-generating process and is provably valid under mild conditions. Computation
and marginalization strategies are discussed, and two applications of this generalized IM
approach are presented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An advantageous feature of the mainstream approaches to statistical inference is simplicity. On one hand, likelihood-
based approaches, including ‘‘Frasian’’ inference (e.g., Reid, 2003; Fraser, 1990, 1991; Barndorff-Nielsen, 1991; Fraser, 2011)
and certain forms of Bayesian inference (e.g., Bernardo, 1979; Ghosh, 2011; Berger et al., 2009, 2015), are simple in the
sense that the calculations relevant to data analysis are largely (or completely) determined by the posited sampling model.
On the other hand, frequentist approaches are also simple because the ‘‘do whatever works well’’ viewpoint is extremely
flexible. This is in sharp contrast with fiducial inference (Fisher, 1973; Dawid and Stone, 1982; Barnard, 1995; Taraldsen and
Lindqvist, 2013), its generalizations (Hannig, 2009; Hannig et al., 2016), and the recently proposed inferential model (IM)
framework (Martin and Liu, 2013, 2015a,c,b), which appear to be not-so-simple in the sense that their construction depends
on something more than the data and sampling model. In particular, the fiducial and IM construction begins with a specific
representation of the data-generating mechanism, one that determines but is not determined by the sampling model. This
data-generating mechanism identifies an auxiliary variable, or pivotal quantity, that controls the random variation in the
observable data. A familiar example of this kind is the regression model, Y = Xβ + σε, where the random ‘‘ε’’ part controls
the variation of the response Y around the deterministic ‘‘Xβ ’’ part. That the fiducial and IM solutions depend on the choice
of the data-generating mechanism may be seen as a shortcoming of these approaches.

One approach to deal with the choice of data-generating mechanism is to find one that is ‘‘best’’ in some sense; for
example, Pal Majumdar and Hannig (2015) compare different data-generating mechanisms using higher-order asymptotics
in the fiducial context. Since defining and identifying the ‘‘best’’ is difficult, I want to take a different approach. In this paper,
building onMartin and Liu (2015b, Ch. 11), I want to incorporate the familiar frequentists’ flexibility into the IM construction.
This allows the user to construct a generalized IM without specifying a full data-generating mechanism, simplifying the
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construction in several ways. First, just like in the likelihood-based approaches mentioned above, a generalized IM can
be constructed based on the sampling model alone, or some function thereof, easing the burden on the user. Second,
the generalized IM can be constructed based on a generalized association that involves only a one-dimensional auxiliary
variable, which simplifies user’s task of selecting a good predictive random set. Compare this to the basic IM approachwhere
the user must first specify a data-generating mechanism and carry out some potentially non-trivial dimension-reduction
steps (e.g., Martin and Liu, 2015a). Despite making substantial simplifications to the IM construction, it can be shown that
this generalization preserves the IM’s guaranteed validity property under mild conditions. Therefore, the generalized IM
framework is a simple and widely applicable tool for valid, prior-free, probabilistic inference.

This paper’s main contribution is the new perspective it brings to some more-or-less familiar ideas, results, and
techniques. Specifically, all of the familiar considerations used in constructing statistical procedures fit within the seemingly
rigid IM framework, and this has at least two useful consequences. First, working within the IM framework does not require
that one abandon all the classical tools and ways of thinking—these can be merged seamlessly into the framework itself.
Second, new insights concerning these classical tools can be gained when looking from an IM point of view; see Section 3.3.

The remainder of the paper is organized as follows. After some background on IMs in Section 2, a generalized IM approach
is presented in Section 3, with a validity theorem and a special case that is relatively easy to implement, involving only a
scalar auxiliary variable. Important practical considerations, namely, computation and marginalization, are discussed in
Section 4, and two interesting and challenging applications – inference on the odds ratio in a 2 × 2 tables and inference on
the error variance in a mixed-effects model – are presented in Section 5. Concluding remarks are made in Section 6.

2. Background on IMs

Let Y ∈ Y be the observable data, and write PY |θ for the sampling model, which depends on an unknown parameter
θ ∈ Θ . In the basic IM framework, described in Martin and Liu (2013), the starting point – the A-step – is to associate Y and
θ with an unobservable auxiliary variable U ∈ U with known distribution PU . Formally, write

Y = a(θ,U), U ∼ PU . (1)

Martin and Liu (2015a,c) argue that some dimension-reduction steps should be taken first before an association mapping is
defined, so the left-hand side may be something different than the observable data, e.g., a minimal sufficient statistic. This
dimension-reduction step is recommended, but it is not necessary to describe these details here. The result of the A-step is
a set-valued mapping

Θy(u) = {θ : y = a(θ, u)}, u ∈ U, (2)

indexed by the observed Y = y. The main point is that the association determines the sampling model PY |θ or, alternatively,
the ingredients in (1) must be chosen to be consistent with the given sampling model. However, there may be several
versions of the association that are consistent with the sampling model, and different versions may produce different
inferences. This is not unlike the frequentists’ choice of (approximate) pivot for constructing a test, confidence region, etc.
In any case, the question of which association (1) to take, for given sampling model PY |θ , is an important one.

The second step in the basic IM construction – the P-step – is to predict the unobserved value of U in (1), corresponding
to the observed Y = y, with predictive random set S. The P-step is the defining feature of the IM framework, driving its
essential properties and separating it from the approach described in Dempster (2008). The distribution PS of S is to be
chosen by the user, subject to a certain ‘‘validity’’ condition, namely, that, if fS(u) = PS(S ∋ u), then

fS(U)≥st Unif(0, 1), as a function of U ∼ PU ,

where ‘‘≥st’’ means ‘‘stochastically no smaller than,’’ i.e.,

PU {fS(U) ≤ α} ≤ α, ∀ α ∈ (0, 1). (3)

Intuitively, the random set S is meant to be ‘‘good’’ at predicting samples from PU and (3) makes this precise: the
PS-probability of the event ‘‘S ∋ u’’ is small only for a set ofu valueswith relatively smallPU -probability. Sufficient conditions
for (3) are mild, so it is easy to find a valid predictive random set; in fact, most applications of IMs employ a simple ‘‘default’’
predictive random set, see (13).

The third and final step in the basic IM construction – the C-step – is to combine the association at the observed data
Y = y with the predictive random set S. Specifically, one obtains a random subset ofΘ:

Θy(S) =


u∈S

Θy(u). (4)

The intuition behind this is as follows: if one believes that S contains the value of U corresponding to the observed Y = y
and the true θ , which is justified by (3), then one must also believe, with equal conviction, that Θy(S) contains the true θ .
The IM output is the distribution of the random setΘy(S), which I will summarize with a plausibility function. Specifically,
if A ⊂ Θ , then the plausibility function at A is

ply(A) = PS{Θy(S) ∩ A ≠ ∅}.
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