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a b s t r a c t

We study a varying coefficient partially nonlinear model in which the regressors are gen-
erated by the multivariate unit root processes. A profile nonlinear least squares estimation
procedure is applied to estimate the parameter vector and the functional coefficients. Un-
der some mild conditions, the asymptotic distribution theory for the resulting estimators
is established. The rate of convergence for the parameter vector estimator depends on the
properties of the nonlinear regression function. However, the rate of convergence for the
functional coefficients estimator is the same and enjoys the super-consistency property.
Furthermore, a simulation study is conducted to investigate the finite sample performance
of the proposed estimating procedures.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

In the past two decades, various nonparametric and semiparametric estimation techniques have been applied to model 2

stationary time series (see Fan and Gijbels, 1996; Härdle et al., 2000; Fan and Yao, 2003; Gao, 2007; Li and Racine, 2007; and 3

the references therein). However, as pointed out in the literature, the nonstationarity is a very important empirical feature 4

in many economic and financial time series. For example, both prices and exchange rates are nonstationary. Thus, in recent 5

years, there has been much interest in nonparametric and semiparametric models with nonstationary covariates, existing 6

literature include Phillips and Park (1998), Karlsen and Tjøstheim (2001), Juhl and Xiao (2005), Karlsen et al. (2007), Cai et 7

al. (2009), Xiao (2009), Wang and Phillips (2009a, b, 2016), Sun and Li (2011), Chen et al. (2012), Gao and Phillips (2013), 8

Sun et al. (2013), Chen et al. (2015), Gao et al. (2015), Liang et al. (2015), Dong et al. (2016) and Li et al. (2017). 9

In this paper, we tackle a general class of semiparametric models with nonstationary covariates. Specifically, we focus on 10

a varying coefficient partially nonlinear model with the form 11

Yt = αT
t β(Zt ) + g(Xt , γ ) + ut , (1) 12

whereαt is a d-dimensional I(1) vector,β(·) is a d-dimensional vector of unspecified smooth functions, Zt is a scalar stationary 13

variable, g : R×Rm
→ R is a known nonlinear function, Xt is a scalar I(1) variable, γ is am×1 vector of constant parameters 14

that lies in the parameter set Γ and ut is a stationary error term. Here, the notation I(1) refers to the integrated of order one 15

time series or the unit root process. The advantage of the semiparametric model compared with the nonparametric one, 16

is that it attenuates the ‘‘curse of dimensionality’’ problem. In addition, Model (1) that we discuss provides a very flexible 17

framework in nonstationary time series, and it covers various linear and nonlinear time series models with nonstationarity. 18
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For example, when g(Xt , γ ) = γXt , (1) reduces to semi-varying coefficient models with nonstationary regressors which has1

been investigated by Gu and Liang (2014) and Li et al. (2017). When g(Xt , γ ) = 0, (1) becomes the functional coefficient2

models with nonstationarity, which has been studied by Cai et al. (2009), Xiao (2009), Sun and Li (2011), Gao and Phillips3

(2013), Sun et al. (2013) and Chen et al. (2015).When the varying coefficient part equals 0, themodel reduces to the nonlinear4

parameter regressions model with integrated time series which has been systematically investigated in existing literature5

such as Park and Phillips (1999, 2001), Chang and Park (2011) and Chan and Wang (2015).6

The main focus of this paper is to investigate the semiparametric estimation for both the parameter vector γ and the7

functional coefficients β(·), and then derive the associated asymptotic distribution theory.When the covariates in themodel8

(1) are i.i.d, the profile nonlinear least squares estimation procedurewas proposed by Li andNie (2008) and Li andMei (2013).9

In that case, the resulting parametric vector estimator is consistent and asymptotic normal with rate of convergence
√
n.10

Meanwhile, the nonparametric estimator for functional coefficients enjoys the asymptotically normality with usual rate of11

convergence
√
nh. In the present paper, we extend the results to the nonstationary time series case. The extension involves12

the asymptotic theory for the time series with nonstationarity. Moreover, as the model contains a nonlinear parameter part,13

similar to Park and Phillips (1999, 2001), we show that the rate of convergence for the parameter vector estimator depends14

on the properties of the known nonlinear regression function g(·, ·). However, the specification of g(·, ·) given in our paper15

does not affect the asymptotic property of the nonparametric estimator for the functional coefficients. We show that the16

rate of convergence for the nonparametric estimator is n
√
h, which is common in the nonstationary time series case. Our17

results complement existing literature concerning nonlinear nonstationary time series (see, for example, Park and Phillips,18

2001; Juhl and Xiao, 2005; Cai et al., 2009; Xiao, 2009; Wang and Phillips, 2009a, b; Sun and Li, 2011; Chen et al., 2012; Sun19

et al., 2013 and Li et al., 2017).20

The paper is organized as follows. Section 2 introduces the profile nonlinear least squares estimation method. The21

asymptotic distribution theory for the proposed estimators are given in Section 3. A simulation study is presented in22

Section 4. Section 5 is devoted to the conclusion. Finally, the tedious definitions, the technical lemmas and the detailed23

proofs are postponed to the Appendix.24

2. Estimation method25

We use the profile nonlinear least squares estimation method proposed in Li and Nie (2008) to estimate the parameter26

vector γ and the functional coefficients β(·). Throughout the paper, we let γ0 and β0(·) be the true parameter vector and27

functional coefficients.28

Firstly, we fix γ , then29

Yt − g(Xt , γ ) = αT
t β(Zt ) + ut . (2)30

We adopt the local linear fitting method (Fan and Gijbels, 1996) to estimate the functional coefficient β0(·). Assuming that31

β0(·) has second order derivative, we have the following Taylor expansion:32

β0(z) ≈ β0(z0) + β
′

0(z0)(z − z0),33

for z in a small neighborhood of z0. The local linear estimate of Ψ (z0) = (β0(z0)T , hβ
′

0(z0)
T )T for given γ is defined by34

minimizing the weighted loss function (with respect to Ψ ):35

Ln(Ψ |γ ) =

n∑
t=1

{
Yt − g(Xt , γ ) − Vt (z0)TΨ

}2
Kh(Zt − z0),36

where Ψ is a 2d-dimensional vector, Vt (z0) =

(
αt

h−1(Zt − z0)αt

)
, and Kh(·) = K (·/h)/h with K (·) being the kernel function and37

h being the bandwidth.38

Let Y = (Y1, . . . , Yn)T , g(γ ) = (g(X1, γ ), . . . , g(Xn, γ ))T , M0 = (αT
1β0(Z1), . . . , αT

nβ0(Zn))T , W (z0) = diag(Kh(Z1 −39

z0), . . . , Kh(Zn − z0)), and40

α(z0) =

⎛⎜⎝V1(z0)T
...

Vn(z0)T

⎞⎟⎠ =

⎛⎜⎝αT
1 h−1(Z1 − z0)αT

1
...

...

αT
n h−1(Zn − z0)αT

n

⎞⎟⎠ .41

Then, the local linear estimate of Ψ (z0) = (β0(z0)T , hβ
′

0(z0)
T )T with given γ can be expressed as42

Ψ̂ (z0, γ ) =
[
α(z0)TW (z0)α(z0)

]−1
α(z0)TW (z0)(Y − g(γ )). (3)43

As a consequence, the estimate of the functional coefficients β0(z0) is44

β̂(z0, γ ) = (Id, 0d×d)Ψ̂ (z0, γ ) = (Id, 0d×d)
[
α(z0)TW (z0)α(z0)

]−1
α(z0)TW (z0)(Y − g(γ )), (4)45
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