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a b s t r a c t

This paper provides new insights into coding invariance for linear models with qualitative
factors, including a coding invariant way of denoting the model coefficients. On this basis,
‘‘interaction contributions’’ (ICs) are proposed for decomposing generalized word counts
for factorial designs into contributions that neither depend on level allocation nor on
the coding of factors. Combinatorially equivalent designs yield the same ICs, so that ICs
are suitable for classifying factorial designs with qualitative factors. ICs are based on
singular value decomposition and have an interpretation in terms of bias contributions
of an interaction on the estimation of the overall mean. The paper introduces ICs and
their tabulations in interaction contribution frequency tables and illustrates their behavior
in various examples. ICs are compared to several other tools for assessing combinatorial
equivalence of general factorial designs, and they are found to provide a useful complement
to existing methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

Two designs are called isomorphic, if they can be obtained from each other by swaps of columns and/or rows and/or 2

appropriate relabelings of factor levels. Isomorphism has to be judged differently for designs with qualitative or quantitative 3

factors: for designswith quantitative factors, isomorphism is sometimes called ‘‘geometric isomorphism’’ (see e.g. Cheng and 4

Ye, 2004); here, changes in level orderings can lead to non-isomorphic designs. For qualitative factors, on the other hand, each 5

relabeling of factor levels leads to an isomorphic design; this type of isomorphismwill be called ‘‘combinatorial equivalence’’ 6

in this paper; the expression ‘‘non-isomorphic’’ is used as a short form for ‘‘not combinatorially equivalent’’, and ‘‘equivalence 7

screening’’ is used as a short form for ‘‘checkingwhether necessary conditions for equivalence are violated’’. When searching 8

for appropriate designs, designs isomorphic to ones that have already been investigated need not be considered. Therefore, 9

the ability to decide whether or not designs are isomorphic is important for efficiently handling resources. This is not only 10

the case when searching for good or optimal designs, but can also be relevant for basic activities regarding experimental 11

practice, for example when trying to adapt data from an existing experiment to a software tool that provides a factorial 12

structure; the effort of obtaining an appropriate map between two isomorphic designs can be quite large and should only 13

be undertaken if the designs in question are isomorphic. 14

Criteria for assessing combinatorial equivalence have to be coding invariant in two ways: they must not depend on 15

swapping some levels in any design column, and for a given set of levels, they must not depend on a particular coding 16
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of the model matrix of a factorial linear model. In their seminal paper on generalized minimum aberration (GMA), Xu and1

Wu (2001) introduced the so-called normalized orthogonal coding (see Definition 2 in Section 2), which ensures that all2

coefficient estimators in a factorial linear model for a full factorial design are uncorrelated and have the same variance. This3

paper interprets coding invariance as invariance against the choice of a normalized orthogonal coding. Throughout the paper,4

the expression ‘‘coding invariant’’ will always be used in this sense, which comprises both level allocation and effect coding.5

It will be shown that outer products of effect model matrices are coding invariant in this sense. Furthermore, the paper will6

provide a coding invariant way of specifying effect coefficient vectors as a linear combination of right singular vectors of the7

effect model matrix. This allows, for example, to create simulation scenarios involving effect sizes for qualitative factors in8

a coding invariant way. The results on coding invariance will also serve as the basis for the development of the ‘‘interaction9

contributions’’ (ICs) that will be introduced in this paper as a tool for assessing combinatorial equivalence.10

Clark and Dean (2001) and Katsaounis and Dean (2008) introduced necessary and sufficient conditions for combinatorial11

equivalence; checking these can be painfully slow, so that various faster tools for equivalence screening have been proposed,12

and Katsaounis (2012) proposed to use these also for screening designs with qualitative and quantitative factors. Section 2.213

will present a collection of existing tools for equivalence screening, including squared canonical correlation frequency tables14

(SCFTs) by Grömping (2017a) andmean aberration frequency tables (MAFTs) by Fontana et al. (2016), among several others.15

The ICs proposed in this paper focus on general factorial designs with at least some factors at more than two levels (since the16

toolbox for 2-level designs is already quite powerful); theywill have to competewith the existing tools. This article considers17

screening tools only, and the Examples section contains a non-isomorphic set of designs that cannot be distinguished by any18

of the screening tools considered here (i.e. none of them provides sufficient conditions for equivalence).19

ICs, like several of the other tools for equivalence screening, are based on generalized word counts: Xu and Wu (2001)20

introduced the generalized word length pattern (GWLP) which is now widely used as the basis of GMA. For a design with n21

factors, the GWLP can be written as (A0, A1, . . . , An), where A0 = 1 generally holds. For j > 0, the generalized count Aj of22

words of length j can be written as a sum of generalized word counts aj(S) from all sets S of j factors. These aj(S) are called23

projected aj values in this paper, and they will be defined and explained in Section 2.2. In many applications, the GWLP is24

applied to orthogonal array designs, which implies that A1 = A2 = 0, so that the first interesting entry is A3. In this paper,25

A1 = 0 is assumed (i.e., level balance of all factors), and the number R with A1 = · · · = AR−1 = 0 and AR > 0 is called26

the resolution of the design; this is in line with the conventional understanding of resolution (e.g. in Hedayat et al., 199927

p. 280) for R ≥ 3 and extends the concept to R = 2, e.g. for supersaturated designs. The majority of the tools for equivalence28

screening used in this paper is related to the projected aj values, with particular focus on projected aR values; the other tools29

are based on Hamming distances between design rows (see Section 2.2).30

The ICs to be developed in this article provide a new coding invariant decomposition of the projected aj values. Theywork31

for pure or mixed level designs with factors at arbitrary numbers of levels. ICs are based on singular value decomposition32

(SVD); ambiguities arising from singular values with multiplicity larger than one are resolved in two different ways, which33

leads to two types of interaction contribution frequency tables (ICFTs). Like the projected aj values themselves, ICs have a34

statistical interpretation in terms of bias contributions of the interaction to estimation of the overall mean. It is proposed to35

use ICFTs for equivalence screening of general factorial designs, and the examples will demonstrate that they complement36

the existing tools for this purpose. Note that, in spite of also using singular values, the approach of the present paper is quite37

different from the proposal by Katsaounis et al. (2013) of using singular values for checking design equivalence for 2-level38

designs.39

Section 2will introduce notation and basic concepts, including a detailed introduction to the existing tools for equivalence40

screening. Section 3 will provide two fundamental theorems on coding invariance in factorial linear models. Section 441

will introduce the interaction contributions and their properties and will provide the aforementioned two types of ICFTs.42

Section 5will provide several examples that exemplify the details of ICs aswell as their performance in equivalence screening43

in comparison to other tools. The final section will discuss connections to further related work and reasonable future steps.44

2. Notation and basic concepts45

We consider factorial designs with n factors in N runs, with si levels for the ith factor. The designs are level-balanced,46

i.e. each factor has each level the same number of times, which implies at least resolution II. Subsets of the factors are47

denoted by S ⊆ {1, . . . , n}, and the cardinality of a set S is denoted by |S|. For j ∈ {1, . . . , n}, Sj = {S ⊆ {1, . . . , n} : |S| = j}48

denotes the set of all j factor sets. The restriction of a design to the factors from a set S ∈ Sj is called a j factor projection and49

is for simplicity identified with the set S.50

2.1. Matrix tools and factorial linear models51

Before discussing factorial linear models, some matrix products are defined and rules for them established. In the52

following, the superscript ⊤ denotes transposition. 1N and 0N denote column vectors of N ones or zeros, respectively, ei53

denotes a unit vector with the value ‘‘1’’ in position i and zeros everywhere else, and IN denotes an N-dimensional identity54

matrix. An orthogonal matrix Q is an r × r matrix with Q⊤Q = QQ⊤
= Ir . Note that multiplication with an orthogonal55

matrix applies rotation and/or reflection operations only. This paper will use the term ‘‘rotation’’ for multiplication with any56

orthogonal matrix Q, regardless whether Q involves only proper rotation (det(Q) = 1) or not.57
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