
Please cite this article in press as: Tsai S.-F., Liao C.-T., D-optimal two-level parallel-flats block designs with partial replication. J. Statist. Plann. Inference
(2017), http://dx.doi.org/10.1016/j.jspi.2017.08.004.

Journal of Statistical Planning and Inference ( ) –

Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

journal homepage: www.elsevier.com/locate/jspi

D-optimal two-level parallel-flats block designs with partial
replication
Shin-Fu Tsai *, Chen-Tuo Liao
Division of Biometry, Institute of Agronomy, National Taiwan University, Taipei 10617, Taiwan

a r t i c l e i n f o

Article history:
Received 24 January 2017
Received in revised form 29 May 2017
Accepted 16 August 2017
Available online xxxx

Keywords:
Optimal design
Orthogonal blocking
Parallel-flats design
Screening experiment
Variance component

a b s t r a c t

Under the assumption of random block effects, a new class of two-level factorial block
designs with partial replication is proposed for estimating the user-specified requirement
sets and variance components. A noteworthy feature of the proposed designs is that the
within-block and between-block replicates are both conducted, such that the components
of variance can be unbiasedly estimated. Under the framework of parallel-flats block
designs, a set of sufficient conditions is presented for design characterization, and an
algorithm is developed for systematically constructing the proposeddesigns. Using the pro-
posed algorithm, a design catalogue is generated as a reference for experimentation. Some
examples are given to demonstrate that the proposed designs are promising alternatives
for practical applications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

When conducting a physical experiment, a natural phenomenon is that the experimental outcomes might be contami-
nated with systematic and random errors. Fisher (1926) proposed several principles for quantifying these errors, including
the principles of randomization, blocking and replication, such that agricultural field trials can be implemented and analyzed
in a more efficient manner. These principles have been widely adopted in many industrial and scientific studies. Random
arrangement of treatments or treatment combinations can avoid systematic errors, which have not been recognized in
advance, among the experimental units. When the experimental units are drastically heterogeneous, these units are divided
into several groups called blocks, such that the intra-block variation is smaller than the inter-block variation. If blocking
is done well, variability over units would be quantified, and the parameters of interest can be estimated in a more precise
manner than an unblocked design. Typically, block effects can be classified into two types: fixed and random block effects.
When the levels of a blocking factor are randomly chosen and statistical inference ismade for the entire level population, the
block effects are reasonably treated as randomeffects. Otherwise, fixed block effects. For example, if an industrial experiment
is performed by some randomly chosen operators, the operator effects are then regarded as random block effects in the data
analysis. Similarly, if a food product is manufactured by rawmaterials, which are randomly sampled from different batches,
then the batch effects are often assumed to be random. Under the assumption of random block effects, an extra component
of variance is introduced to the experimental response, and a more comprehensive analysis is required for inferencing the
factorial effects and variance components. For an excellent introduction to the analysis of experimentswith fixed and random
block effects, the reader is referred to Wu and Hamada (2009).

Replication of treatments or treatment combinations can provide an unbiased estimate for the error variance and improve
the estimation efficiency. Awell-designed experimentwith sufficient replicates offers a solid basis for statistical inference. In
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practice, an unreplicated factorial design is often used for screening active effects at the preliminary stage of a multifactorial
study, because of its run-size economy. Based on the principle of effect sparsity that only few effects are vital and many
of them are trivial, several methods have been developed for identifying truly active effects from unreplicated factorial
experiments. For a comprehensive review and comparison among these proposals, the reader can consult Hamada and
Balakrishnan (1998). When the effect sparsity principle is not fully satisfied, most of the existing methods would not work
out reliable findings, primarily due to the lack of a replication-based estimate for the error variance. Fully replicating all the
treatment combinations is a straightforward way to get the pure replicates. However, this can rapidly outgrow the cost of an
experiment. A cost-effective compromise is to add a fraction of repeated runs to an unreplicated design, such that the error
variance can be unbiasedly and efficiently estimated through these pure replicates. Recently, partially replicated factorial
designs have received much attention by several authors, including Butler and Ramos (2007), Lupinacci and Pigeon (2008),
Dasgupta et al. (2010), Chatzopoulos et al. (2011), Ou et al. (2013), Bird and Street (2016), and Li andQin (2017), amongothers.
Based on the domain knowledge or prior information, potentially active effects can be explicitly enumerated by researchers
in some experimental studies. The collection of these factorial effects is called the requirement set, which typically consists of
all the main effects and certain two-factor interactions. Liao and Chai (2004) first introduced two-level parallel-flats designs
with some identical flats for estimating the user-specified requirement sets. Subsequently, Liao and Chai (2009) proposed
a set of sufficient conditions for a two-level parallel-flats design with exactly two identical flats to be D-optimal over all
competing designs. Tsai and Liao (2011) further extended these results to mixed two- and three-level parallel-flats designs
with respect to theA-, D- andE-optimality criteria. However, none of theseworks takes the variability over units into account.
This motivates us to develop systematic approaches for constructing and analyzing two-level factorial block designs with
partial replication, such that a broader collection of partially replicated designs can be employed for addressing real-world
problems.

The rest of this article is organized as follows. Section 2 introduces some notation and terms. When the block effects are
regarded as random effects and the requirement set is specified, Section 3 gives a set of sufficient conditions for a two-level
parallel-flats block design to be D-optimal over all competing designs. Based on these sufficient conditions, an algorithm
is developed for systematically constructing the proposed designs, and a design catalogue is then generated as a reference
for experimentation. Section 4 discusses the analysis of partially replicated factorial block designs. In addition, a simulated
experiment is analyzed by using the replication-based inference procedure to demonstrate that the proposed designs are
feasible for practical applications. Concluding remarks are given in the final section.

2. Notation and definitions

Some notation and definitions to be used throughout this article are introduced as follows.

2.1. Parallel-flats block designs

Let di be a two-level design, which consists of all the solutions t satisfying the linear equations At = ci over GF (2), where
A stands for a p× n alias matrix of rank p; ci stands for a p× 1 coset indicator vector; and GF (2) denotes the Galois field of
order two. Typically, di is called a single-flat design. The juxtaposition of f single-flat designs d1, d2, . . . , df is further defined
as an f parallel-flats design, which is abbreviated as f -PFD and is denoted by d, namely, d =

{
d1, d2, . . . , df

}
. It is clear

that an f -PFD is constructed by collecting all the solutions of linear equations determined by the matrix pair (A, C), where
C =

[
c1 c2 · · · cf

]
is a p× f coset indicator matrix. Note that the columns of C are not necessarily all distinct. Specifically, an

f -PFD with exactly two identical flats is called an f -PFDR by Liao and Chai (2004). For an introduction to the general theory
of parallel-flats designs, the reader is referred to Section 15.12 of Cheng (2014).

Suppose that the treatment combinations determined by (A, C) are allocated to b blocks of size k. Under the framework
of parallel-flats designs, a blocking scheme can be characterized through a partition on the columns of coset indicatormatrix
C given by

C =
[
C1 C2 · · · Cb

]
,

where Cj =
[
cj1 cj2 · · · cjg

]
; and g denotes the number of flats in each block. Note that the block size k = g × 2n−p, and the

total run size N = f × 2n−p
= b× g × 2n−p

= b× k. The treatment combinations determined by
(
A, Cj

)
are then randomly

allocated to the experimental units in the jth block. This two-level factorial block design is called an f parallel-flats block
design abbreviated as f -PFBD. A special class of f -PFBDs called the f -PFBDRs is defined by (A, C), where each submatrix Cj
of C can be further expressed as

Cj =
[
cj1 Cj0

]
.

Note that the columns of C10, C20, . . . , Cb0 are all distinct, and c11, c21, . . . , cb1 are the same as the first column of C10.
Furthermore, let C0 be the p× (f − b) matrix derived by juxtaposing C10, C20, . . . , Cb0, that is,

C0 =
[
C10 C20 · · · Cb0

]
.

The (f − b)-PFBD determined by (A, C0) is obtained by removing the b identical flats from an f -PFBDR. Equivalently, an
f -PFBDR can be constructed by adding the first flat of its first block to itself and to the other b− 1 blocks of an (f − b)-PFBD.
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