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a b s t r a c t

The classical Birnbaum–Saunders (BS) distribution has recently been generalized in various
ways to introduce flexible parametric models for nonnegative data, focusing on the para-
metric fitting. In this paper, a new symmetrical-based inverse/reciprocal inverse Gaussian
density, through dual transformation, is applied to the context of nonparametric density
estimation for nonnegative data. The beauty and importance of new density estimator lies
in its general formulation via the density generator, including a log-symmetrical kernel
density estimator. We provide sufficient conditions under which the proposed estimator
has desirable asymptotic properties, and discuss the asymptotic comparison between the
proposed estimator and the previous (normal-based) estimator.
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1. Introduction

The Birnbaum–Saunders (BS) distribution was originally introduced by Birnbaum and Saunders (1969) as a failure
time distribution on [0,∞) = R+ (say). Its density, with a two-parameter α, β > 0, is given by kBS(s;α, β) =

φ(a(s/β)/α)A(s/β)/(αβ), where φ(u) = exp(−u2/2)/
√
2π , a(t) = t1/2 − t−1/2, and A(t) = (1/2)(t−1/2

+ t−3/2). Díaz
García and Leiva (2005) replaced φ(u) by a symmetrical density Cg g(u2), u ∈ R, and developed a generalized BS (we call
‘‘a symmetrical-based BS’’) density on R+, as follows:

kBSg (s;α, β) = Cg g
(a2(s/β)

α2

)A(s/β)
αβ

, (1)

where g ̸≡ 0 is a nonnegative function on R+, called a density generator (see, e.g., Fang et al. (1990, page 35)), such that
1/Cg =

∫
R g(u

2) du =
∫
R+

y−1/2g(y) dy is well-defined.
Mathematically, the identity

∫
R+

g((s1/2 − s−1/2)2/α2)s−1/2 ds =
∫
R+

g((t1/2 − t−1/2)2/α2)t−3/2 dt (s = 1/t) is helpful to
understand the connection to other related densities on R+, defined by

kIGg (s;α, β) = Cg g
(a2(s/β)

α2

) 1
αβ

(β
s

)3/2
, (2)
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kRIGg (s;α, β) = Cg g
(a2(s/β)

α2

) 1
αβ

(β
s

)1/2
=

s
β

kIGg (s;α, β) . (3)

Specifically, when g(y) = exp(−y/2) = gN(y) (say), these densities are long-standing and popular as the inverse Gaussian
(IG) density and its complementary reciprocal (called ‘‘a reciprocal IG (RIG)’’). Note that the classical IG and RIG densities,
due to Tweedie (1957, (1a)–(1d)), were originally parameterized in several ways. Almost half a century later, the distribution
having the density (2)was studied by Sanhueza et al. (2008a, Definition 1) as an IG type distribution, with a parameterization
(α, β) = (

√
µ/λ,µ), where µ, λ > 0; in this paper, it is called a symmetrical-based IG distribution, denoted by IGg (α, β).

Similarly, the distribution having the density (3) is called a symmetrical-based RIG distribution, denoted by RIGg (α, β).
In view of the right-hand side of (3), the parameter β > 0 is the mean of the IGg (α, β) distribution, so that the density
is sometimes known as a length-biased version in the literature. We observe that there is a relationship between the
symmetrical-based BS and IG distributions, i.e., the density (1) is an equally weighted mixture of the densities (2) and (3);
kBSg (s;α, β) = (1/2)kIGg (s;α, β) + (1/2)kRIGg (s;α, β). More generally, a mixture distribution having the density

kMIGϵ
g (s;α, β) = (1 − ϵ)kIGg (s;α, β) + ϵkRIGg (s;α, β) , (4)

where ϵ ∈ [0, 1] is a mixing proportion, is called a symmetrical-based mixture IG (MIG) distribution, denoted by
MIGg,ϵ(α, β). See Leiva et al. (2010)with theparameterization (α, β) = (

√
µ/λ,µ),whereµ, λ > 0. Themixture distribution

when g(y) = gN(y) appeared in Jørgensen et al. (1991).
It should be remarked that, in this paper, the term ‘‘symmetrical-based IG’’ (rather than the term ‘‘generalized IG (GIG)’’)

is used for the density (2), because, historically, the density on R+, with a three-parameter σ , ω > 0 and ν ∈ R, defined by

kν,ω,σ (s) =
sν−1

2σ νKν(ω)
exp

{
−
ω

2

( s
σ

+
σ

s

)}
(5)

(see, e.g., Jørgensen (1982, page 1) with parameterization (σ , ω) = (
√
χ/ψ,

√
χψ), where χ,ψ > 0), is popularly known

as a GIG density. Here, Kν(·) = K−ν(·) is the modified Bessel function of the third kind and with index ν. Such a GIG family
of the densities contains the classical IG and RIG densities as special cases ν = −1/2 and 1/2, respectively; note that
K1/2(ω) = {π/(2ω)}1/2e−ω .

Many authors have introduced the above-mentionedmodels (1)–(4) to study the density/cumulative distribution/hazard
functions, moments, transformations, generation of random numbers, and so on, mainly focusing on the parametric
likelihood inference for nonnegative data. In this paper, using such flexible densities as kernels, we are concerned with
nonparametric estimation of the probability density that has the support R+. In that case, the standard kernel density
estimator (Rosenblatt, 1956) is, in general, inconsistent near the boundary, due to the so-called boundary bias (see,
e.g., Wand and Jones (1995, Subsection 2.11)). Consequently, various remedies for removing the boundary bias have been
suggested. Jones (1993) gave an extensive review of the boundary corrections (renormalization, reflection, and generalized
jackknifing) until 1993. See Zhang et al. (1999) formore advanced reflection techniques in the 1990s. On the other hand, over
the last decade, there has been a growing interest in the use of asymmetric kernel (AK) whose support matches the support
of the density to be estimated. Chen (1999, 2000) did pioneering studies of nonparametric density estimation using gamma
densities (or beta densities) as kernels, for nonnegative data (or the data from the unit interval). Scaillet (2004) proposed
using IG and RIG densities, rather than gamma density. See also Jin and Kawczak (2003) for other applications of BS and
log-normal (LN) densities. Igarashi and Kakizawa (2014) and Igarashi (2016) reformulated Jin and Kawczak’s (2003) and
Scaillet’s (2004) estimators, by applying a weighted LN density and a mixture of modified Bessel (MMB) densities. It should
be remarked that Igarashi and Kakizawa (2014) renamed the GIG density (5) as a modified Bessel density, noting that its
normalizing constant involves only Kν(·); the modified Bessel function of the third kind.

In this paper, we further develop a general framework for boundary-bias-free AK density estimation. The contribution
of this paper is fivefold: First, the densities (1)–(4) are further extended so that the resulting four-parameter density
nests the log-symmetrical (LS) density as a special case. Here, the LS density, being a natural extension of the LN density
kLN(s;µ, σ ) = exp{−(log s − µ)2/(2σ 2)}/(

√
2πσ 2s) in a familiar form, is the univariate analogue of (multivariate) log-

elliptical density (see Fang et al. (1990, Section 2.8)). Second, the present paper allows a unified treatment via density
generator g . We provide a set of conditions of g under which a family of the proposed estimators has desirable asymptotic
properties. Third, a subfamily of the LS kernel density estimators is newly proposed, as an alternative to the LN kernel density
estimator (Igarashi, 2016). Fourth, some existing estimators had an unrealistic problem of ‘‘a zero value at the origin’’, which
is not suitable for estimating the density f (0) > 0. We resolve such a bad definition of the previous estimators (Jin and
Kawczak, 2003; Marchant et al., 2013). Fifth, the asymptotic comparison between the proposed estimator and the previous
(normal-based) estimator is discussed in terms of the mean integrated squared error (MISE).

The rest of the paper is organized as follows. In Section 2, we introduce an additional parameter q ∈ R to create
a new distribution with a four-parameter (α, β, ϵ, q) and a density generator g , focusing on a broad applicability in the
nonparametric density estimation for nonnegative data. In Section 3, we propose a new symmetrical-based MIG⟨q⟩ kernel
density estimator. Section 4 presents some asymptotic properties of the proposed estimator. In Section 5, we discuss the
asymptotic comparison between new estimator and the previous (normal-based) estimator. Section 6 contains a simulation
study to demonstrate its finite sample performance. Proofs of the results in Section 4 are given in the Appendix.
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