
Journal of Statistical Planning and Inference 193 (2018) 151–178

Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

journal homepage: www.elsevier.com/locate/jspi

Optimal change point detection in Gaussian processes✩

Hossein Keshavarz a,*, Clayton Scott b,a, XuanLong Nguyen a,b

a Department of Statistics, University of Michigan, United States
b Department of Electrical Engineering and Computer Science, University of Michigan, United States

a r t i c l e i n f o

Article history:
Received 10 May 2017
Received in revised form 7 September 2017
Accepted 9 September 2017
Available online 22 September 2017

Keywords:
Change-point detection
Gaussian processes
Fixed domain asymptotic analysis
Minimax optimality

a b s t r a c t

We study the problem of detecting a change in the mean of one-dimensional Gaussian
process data in the fixed domain regime. We propose a detection procedure based on the
generalized likelihood ratio test (GLRT), and show that ourmethod achieves asymptotically
near-optimal rate in a minimax sense. The notable feature of the proposed method is
that it exploits in an efficient way the data dependence captured by the Gaussian process
covariance structure. When the covariance is not known, we propose the plug-in GLRT
method and derive conditions under which the method remains asymptotically near-
optimal. By contrast, the standard CUSUM method, which does not account for the co-
variance structure, is shown to be suboptimal. Our algorithms and asymptotic analysis are
applicable to a number of covariance structures, including the Matern class, the powered
exponential class, and others. The plug-in GLRT method is shown to perform well for
maximum likelihood estimators with a dense covariance matrix.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Change point detection is the problemof detecting an abrupt change or changes arising in a sequence of observed samples.
A common problem of this type involves detecting shifts in the mean of a temporal or spatial process. This problem has
found a variety of applications in many fields, including audio analysis (Gillet et al., 2007), EEG segmentation (Lavielle,
2005), structural health monitoring (Noh et al., 2012; Hu et al., 2007) and environment sciences (Last and Shumway, 2008;
Verbesselt et al., 2010). Despite advances in the development of algorithms (Kawahara and Sugiyama, 2009; Lavielle, 2005;
Liu et al., 2010; Rigaill, 2010) and asymptotic theory (Bertrand et al., 2011; Tartakovsky et al., 2006; Shao and Zhang, 2010;
Levy-leduc, 2007) for a number of contexts, such studies are mainly confined to the setting of (conditionally) independently
distributed data. Existing works on optimal detection of shifts in the mean in temporal data with statistically dependent
observations are far less common.

Incorporating dependence structures into the modeling of random processes is a natural approach. In fact, this has
been considered in detecting changes of remotely collected data (Chandola and Vatsavai, 2011; Gabriel et al., 2011). For
instance, Chandola and Vatsavai (2011) proposed a Gaussian process based algorithm to identify changes in Normalized
Difference Vegetation Index (NDVI) time series for a particular location in California. It is therefore of interest to study how
the dependence structures of the underlying process can be accounted for, e.g., its covariance function and spectral density,
in designing statistically efficient detection procedures. In this paper, we shall focus on the detection of a single change in
the mean of a Gaussian process data sequence.
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Consider a simplified setting in which we let G be a Gaussian process on a domain D ⊆ R and Dn := {tk}nk=1 ⊂ D denote
a finite index set of sampling points. Denote the observed samples by X = {Xk}

n
k=1 in which Xk = G (tk) for k = 1, . . . , n.

Moreover, let t ∈ Cn,α ⊆ {1, . . . , n} (the parameter α is a positive scalar which will be introduced in Section 2.1) and b > 0
represents the point of sudden change and the jump/shift value, respectively. Namely, there isµ ∈ R (whichwill be assumed
to be 0 for now) such that

EXk =

(
µ −

b
2

)
1 (k < t) +

(
µ +

b
2

)
1 (k ≥ t) , k ∈ {1, . . . , n} . (1.1)

To design a detection procedure and analyze its performance as sample size n grows to infinity, one is confronted with
two fundamentally different frameworks, the framework of increasing domain asymptotics and that of fixed domain (infill)
asymptotics, cf., e.g., Rao et al. (2012). The former arises naturally in time series analysis, which is distinguished by the
constraint that the distance between consecutive sampling time points are bounded away from zero. The simplest instance
of the sampling scenario in this regime arises when the diameter of Dn is of order n and min |ti+1 − ti| > ϵ for some strictly
positive, fixed scalar ϵ. In our notation the index set for the Gaussian process represents the sampling time points. Typically
we set D = R and

⋃
∞

n=1Dn = N or Z. There is a large literature on change point detection via the increasing domain
asymptotics (Antoch et al., 1997; Horváth, 1997; Horváth and Hušková, 2012; Kokoszka and Leipus, 1998; Rencova, 2009;
Yao and Davis, 1986) — which we shall return to in a moment. Fixed domain (or infill) asymptotics, one the other hand, is
a more suitable setting when the index set of sampling points D is bounded, so that the observations get denser in D as n
increases. Particularly forD ⊂ R, we have that min |ti+k − ti| = O (k/n) for positive integers i, kwith i, (i + k) ∈ {1, . . . , n},
and it can be extended to multidimensional domains in a straightforward way. This is the case for spatially distributed
data (Stein, 1999), where the domain of the index set is typically of one, two or three dimensions. This approach is also
appropriate in the context of change detection for non-stationary processes (Adak, 1998; Dahlhaus, 1997; Adak, 1998; Last
and Shumway, 2008). The development of detection algorithms and theory for fixed domain asymptotics are relatively rare.

To gain a quick intuition on how the different asymptotic settings can affect the detection of a change in the observed
sequence X = {Xk}

n
k=1, one can look into the correlation among nearby samples in the sequence. In the increasing domain

regime, even for long range dependent processes the correlation among samples Xi and Xj is small when |j − i| is large. By
contrast, in the fixed domain regime, regardless of how large the sample size is, if |j − i| is of order nβ for some β ∈ (0, 1),
the correlation among Xi and Xj is still close to one. This entails that the effective sample size is much smaller than n. As a
consequence, standard techniques that work well in the increasing domain setting do not work as well in the fixed domain
setting. In the latter, we shall needmore effective techniques to account for the strong dependence in the observed samples.

Previous works. An early attempt to study shift in mean detection was that of Chernoff and Zacks (1964). More general
settings of this problem have been studied in subsequent works, e.g., MacNeill (1974), Deshayes and Picard (1985) and Yao
and Davis (1986). For instance it is assumed in Yao and Davis (1986) that the sequence of Xk’s are independent Gaussian
variables. They proposed a detection method based on the generalized likelihood ratio test (GLRT), also known as the
cumulative sum (CUSUM) test, and given by

TCUSUM = 1

{
max
t∈Cn,α

{√
t (n − t)

n

⏐⏐⏐⏐⏐ 1
n − t

n∑
k=t+1

Xk −
1
t

t∑
k=1

Xk

⏐⏐⏐⏐⏐
}

≥ Rn

}
. (1.2)

CUSUM compares the maximum of a test statistic over Cn,α with a critical value Rn. Non-asymptotic upper bounds on the
error probabilities of this simple test were obtained by the authors under the Gaussian and i.i.d. assumptions. Due to its
simplicity, the CUSUM test is very popular, and has been applied to a variety of settings.

For example, subsequent works studied the behavior of the CUSUM test under weaker assumptions in the increasing
domain regime (Antoch et al., 1997; Horváth, 1997; Horváth and Hušková, 2012; Rencova, 2009). We wish to mention
Rencova ( (Rencova, 2009), chapter 4), who studied the same test as Yao and Davis, (1986), but workingwith the assumption
that X is a strongmixing time series. Kokoszka and Leipus (1998) also analyzed the CUSUM test, but workingwith a different
dependent observation model with sub-squared growth of the variance of partial sums, i.e., there is δ ∈ (0, 2) such that for
any k < m, var

∑m
j=kXj ≲ (m − k + 1)δ . Horváth (1997), Horváth and Hušková (2012) and Antoch et al. (1997) studied the

performance of the CUSUM test for the detection of a sudden change in themean in linear processes, i.e. Xt =
∑

∞

j=0wjϵt−j, in
which {ϵt}

∞

t=−∞
are i.i.d. and zeromean randomvariables and theweights

{
wj
}∞

j=0 satisfy some properties such as absolute or
square summability. We also refer the reader to Aue and Horváth (2013) and Horváth and Rice (2014) for a comprehensive
review of abrupt change detection in the increasing domain regime.

TheCUSUMtestmay also be applied to onedimensional processeswith correlated samples, after a proper standardization.
For instance, Horváth and Hušková (2012) used a different normalizing factor for applying CUSUM to one dimensional
Gaussian time series with long range dependence. However apart from the standardizing factor, they do not directly
incorporate the correlation structures of the data in the formulation of the test statistics. Furthermore, different forms of
the CUSUM test were proposed to detect abrupt changes in the sequential detection literature, see e.g., Lai (1998). At first
sight, itmay seempuzzling how the CUSUM test attains nearly optimal detection performance in the increasing domain even
as its test statistic apparently ignore the dependence among data samples (see e.g. Antoch et al. (1997); Horváth (1997);
Horváth and Hušková (2012); Rencova (2009)). As noted earlier, the covariance cov (Xs, Xt) → 0 as |t − s| grows to infinity.
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