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a b s t r a c t

We establish a general bootstrap procedure combined with a modified Anderson–Darling
statistic. This procedure is proved to be valid for heavy tailed generalized Pareto
distributions that are commonly used to model excesses over a high threshold in extreme
value theory. Then, the method is applied to daily precipitation excesses simulated over
the Euro-Mediterranean region in autumn by four regional climatemodels from the EURO-
CORDEX initiative.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In many fields, e.g. climate sciences, there is an increasing need of modeling extreme values. The natural statistical
framework to perform such task is the extreme value theory—EVT (deHaan and Ferreira, 2006; Reiss and Thomas, 2007) that
is mainly based on the Fisher–Tippett theorem. Under some regularity conditions, this theorem states that the distribution
of the maximum of m i.i.d. random variables converges to a distribution belonging to a specific parametric family: the
generalized extreme value (GEV). Based on this result, a similar limiting theorem for excesses over a high threshold holds.
In this case, under general regularity conditions, Balkema, de Haan and Pickands (Balkema and de Haan, 1974; Pickands,
1975) established that the limiting distribution belongs to the generalized Pareto (hereafter GP) family composed of three
sub-families of distributions: Pareto, Exponential, Beta. A generic distribution belonging to the GP family, can be written as:
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for σ > 0 and for x > 0 when ξ ≥ 0 and x ≤ −
σ
ξ
when ξ < 0. Several methods have been developed and proposed

to estimate the two parameters controlling the GP distribution, e.g.: maximum likelihood (Smith, 1985), generalized
probabilityweightedmoments (Diebolt et al., 2007). Nevertheless, the inferencewith small samples (especially of ξ ) remains
difficult as well as testing the convergence condition on which the model relies. Thus, assessing the goodness-of-fit of such
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a model in applications to real data can be important. To address this issue, Choulakian and Stephens (2001) proposed tests
based on the Cramér–von Mises and the Anderson–Darling statistics both for known and unknown parameters of the GP
distribution. However, the former gives equal weight to all observations while the latter gives more weight to both tails.
Therefore, when the interest is on heavy tailed distributions (i.e., GPwith ξ > 0), amodification is needed.With this respect,
a modified Anderson–Darling statistic (hereafter MADA) was proposed by Ahmad et al. (1988):

An = n


∞

−∞

[F(x) − En(x)]2 · [1 − F(x)]−1dx (2)

where n denotes the sample size, F is the theoretical distribution and En is the empirical distribution function. However,
when the parameters of F are not known and estimated, the asymptotic distribution of An (and the critical values for the
goodness-of-fit test) is unknown too.

In this paper, we establish a valid general bootstrap procedure for goodness of fit for modified Anderson–Darling statistic
under some general conditions on hazard function. The method is also valid for the heavy tailed GP family, as applied in
previous studies (Toreti et al., 2013). Then, we apply the test to characterize daily precipitation extremes in autumn over
the Euro-Mediterranean region simulated by a set of (recently released) regional climate models in the frame of the EURO-
CORDEX initiative (Jacob et al., 2014). The achievement of a better understanding and characterization of precipitation
extremes is very important due to the high impacts of these events on human and natural systems (IPCC, 2012), and
this is especially true in a climate change context. Furthermore, a potential increase of vulnerability and exposure to
climate extremes further enhances this importance. Concerning the Euro-Mediterranean region, its complexity in terms
of topography, atmospheric processes, etc. (Lionello et al., 2012) is well reflected in the estimated and observed climate
extremes over the region (Ulbrich et al., 2012; Toreti et al., 2010).

In the following section we establish a valid bootstrap procedure for goodness of fit for modified Anderson–Darling
statistic under some general conditions on hazard function. The third section is focused on a simulation study, while the
fourth one is devoted to the climate analysis and the last one on conclusions.

2. The bootstrap approach

The procedure (and the associated proof) to be combined with MADA builds on the work of Babu and Rao (2004).
Let F = {F(·; θ), θ ∈ Θ} be a family of continuous distribution functions with Θ being an open region in a p-
dimensional Euclidean space. For instance, the family of GP distributions with positive shape parameter, θ = (σ , ξ) and
Θ = (0, ∞)× (0, ∞). Then, let X1, X2, . . . , Xn be i.i.d. random variables from a distribution F . The aim is to test F = F(·; θ)
for some θ = θ0 ∈ Θ by using the MADA statistics, which is based on the empirical processes Yn(x; θ) =

√
n [F(x)− En(x)].

As soon as an estimator of θ is available (i.e., θ̂n), n i.i.d. samples X⋆
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⋆
2 , . . . , X

⋆
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the same estimator of the first step can be used to get θ̂ ⋆
n from X⋆

1 , X
⋆
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n . Thus, this approach can be applied to obtain

the critical levels of the statistic if we show that (under some specific conditions)
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n(x)] converges for almost all sample sequences to the same limiting distribution of
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√
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To achieve this objective we need some technical results and the assumptions listed in the Appendix. Given θ0 ∈ Θ

and Λ ⊂ Θ the closure of a given neighborhood of θ0, suppose {θn} is a sequence in Λ converging to θ0 as n → ∞. Let
X1,n, . . . , Xn,n be i.i.d. random variables from the distribution F(·; θn). Let Pθn denote the probability measure induced by
X1,n, . . . , Xn,n and let En denote the empirical distribution of these random variables. Suppose θ̂n is an estimator of θn, we
can just start by stating the following theorem of Babu and Rao (2004). See Appendix for assumptions.

Theorem 2.1 (Theorem 4.1, in Babu and Rao, 2004). Suppose θn → θ0, assumption (A1) holds, and

θ̂n − θn =
1
n

n
i=1

ℓ(Xi,n; θn) +
1

√
n

ϵn, (3)

for a score function ℓ satisfying the assumptions (A2)–(A5), where ϵn → 0 in Pθn-probability. If L(θn) → L(θ0), then the process
Yn given by

Yn(x; θ̂n) =
√
n

En(x) − F(x; θ̂n)


converges weakly to a centered, E{Y (x)} = 0, Gaussian process Y , where L(θ) is defined in the Appendix (see A3).

From this theoremandassuming conditions (E) and (P) of Appendix to be valid, it follows that for almost all sample sequences
the processes Y (·, θ̂∗

n ) and Y (·, θ̂n) convergeweakly to the same limiting centeredGaussian process Y . Now, letλ(·; θ)denote
the hazard function of F(·; θ) i.e.,

λ(x; θ) =
f (x; θ)

1 − F(x; θ)
,

where f (·; θ) denotes the density function of F(·; θ).
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