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a b s t r a c t

We consider functional data analysis for randomly perturbed repeated time series with
a general dependence structure of the error process. Specifically, the question of testing
for equality of subspaces spanned by a finite number of eigenfunctions is addressed.
The asymptotic distribution of standardized residual processes based on projections of
eigenfunctions is derived. A two-sample test based on the residual processes is proposed
together with a nuisance parameter free bootstrap procedure. Simulations illustrate finite
sample properties.
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1. Introduction 1

In many applications, repeated time series Yij (i = 1, . . . , n, j = 1, . . . ,N) can be assumed to be of the form 2

Yij = Xi(tj) + ϵi(j) (1) 3

where Xi(t) ∈ L2[0, 1] are independent randomly generated smooth functions, tj = jN−1
∈ [0, 1] is rescaled time and ϵi(j) 4

(j ∈ N) denote independent error processes (independent in i). In functional data analysis (FDA) one is mainly interested in 5

the covariance operator C(y)(t) =

C(s, t)y(s)ds (y ∈ L2[0, 1]) and its spectral representation. Here, µ(t) = E[X(t)] and 6

C(s, t) = Cov(X(s), X(t)) = E[(X(s) − µ(s))(X(t) − µ(t))]. The spectral representation of C(s, t) is of the form 7

C(s, t) = cov (X (t) , X (s)) =

∞
l=1

λlφl (s) φl (t) (t, s ∈ [0, 1]) (2) 8

where the eigenfunctions φl(t) (l ∈ N, t ∈ [0, 1]) build an orthonormal L2[0, 1]-basis and the eigenvalues λl ≥ 0 are 9

such that


l λl < ∞ and λl ≥ λl+1. In classical functional data analysis, the functions Xi are assumed to be observed 10

directly, i.e. ϵi(j) ≡ 0 (see e.g. Ramsay and Silverman, 2002, 2005, Bosq, 2000, Ferraty and Vieu, 2006, Horváth and 11

Kokoska, 2012). The asymptotic distribution of estimated eigenfunctions and eigenvalues can be found in Dauxois et al. Q3 12

(1982) and Hall and Hosseini-Nasab (2006, 2009). The situation with non-zero i.i.d. errors is considered for instance in 13

Hall et al. (2006), Yao (2007), Staniswalis and Lee (1998) and Yao et al. (2003, 2005). Related results on nonparametric 14

estimation of µ(t) = E(Xi(t)) for repeated time series are discussed in Hart and Wehrly (1986), Lin and Carroll (2000), 15

Sererini and Staniswalis (1994), Staniswalis and Lee (1998), Verbyla et al. (1999) and Wild and Yee (1996), among others. Q4 16
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Kernel estimation of µ(t) in repeated series with strongly dependent errors is considered in Ghosh (2001) and Beran and1

Liu (2014a,b). Beran and Liu (2014a,b) derive functional limit theorems for kernel estimators of µ(t) and the covariance2

operator C under short- and long-memory assumptions. For further references on FDA see e.g. Bosq (2000), Ramsay and3

Silverman (2002, 2005), Clarkson et al. (2005), Ferraty and Vieu (2006), Ramsay et al. (2009), Ferraty and Romain (2011) and4

Horváth and Kokoska (2012). Nonparametric regression for single long-memory time series observations is discussed for5

instance in Hall and Hart (1990), Csörgö and Mielniczuk (1995), Ray and Tsay (1997), Robinson (1997) and Beran and Feng6

(2002a,b,c). For a general overview on statistical inference for long-memory processes see e.g. Beran (1994), Giraitis et al.7

(2012), Beran et al. (2013) and references therein.8

One of the main objectives in FDA is to obtain a low-dimensional representation of X in terms of eigenfunctions φl9

(l = 1, . . . ,m) with the largest m eigenvalues. In this paper, we consider the following two-sample problem. Suppose10

we observe two independent samples Y (1)
ij = X (1)

i (tj) + ϵ
(1)
i (j) (i = 1, . . . , n(1), j = 1, . . . ,N (1)) and Y (2)

ij = X (2)
i (tj) + ϵ

(2)
i (j)11

(i = 1, . . . , n(2), j = 1, . . . ,N (2)), with X (k)
i , ϵ

(k)
i (k = 1, 2) defined as above. The Karhunen–Loève expansions of X (k)

i12

(k = 1, 2) are given by13

X (k)
i (t) = µ(k)(t) +

∞
l=1

ξ
(k)
il φ

(k)
l (t) (k = 1, 2).14

Given a finite fixed dimension m ∈ N, we are interested in testing whether the subspaces (of L2[0, 1]) spanned by φ
(1)
l15

(l = 1, . . . ,m) and φ
(2)
l (l = 1, . . . ,m) are the same. A test based on residual functions is developed and its asymptotic16

distribution is derived under the null hypothesis of identicalm-dimensional eigenspaces. Note that this null hypothesis does17

not imply that the eigenfunctions and eigenvalues are identical. Thus, neither tests for equality of the covariance structure18

(Fremdt et al., 2013; also see Horváth et al., 2009 in a functional regression context) nor tests for equality of eigenfunctions19

(Benko et al., 2009; Boente et al., 2011) are directly applicable.20

The test developed here was motivated by questions raised in the context of event related potentials (ERP) obtained21

from EEG measurements. For instance, in experiments on rational decision making (see e.g. Achtziger et al. 2014), it was22

conjectured that different experimental conditions (or ‘‘treatments’’) may lead to changes in some low dimensional eigen-23

subspaces. Note that this differs from testing equality of covariance functions or eigenvalues and eigenfunctions themselves.24

Equality of certain low dimensional eigen-subspaces does not necessarily imply equality of the entire covariance operator.25

Moreover, equality of eigenfunctions and eigenvalues is not required under the null hypothesis, because only the spans26

of the eigenfunctions are compared. In many applications equality of eigenfunctions or eigenvalues is too restrictive and27

therefore not of direct interest.28

Typically, EEG data are very noisy and the noise component is highly correlated, including the possibility of longmemory29

(see e.g. Watters, 2000, Linkenkaer-Hansen et al., 2001, Nikulin and Brismar, 2005, Bornas et al., 2013). The model defined30

above takes this into account. The bootstrap method developed in Section 4 is applicable without the necessity of modeling31

the dependence structure of the noise component explicitly, nor is it necessary to estimate eigenfunctions and eigenvalues32

orthogonal to the eigenspaces considered in the test (see Section 4). Note that in a related paper, Benko et al. (2009) also33

consider testing equality of eigenspaces. Asymptotic results in Benko et al. (2009) are derived explicitly for the noiseless case34

only, with comments on possible extensions to observations with i.i.d. noise. In contrast, themethod and asymptotic results35

discussed in the following apply to randomly perturbed FDAwith a very general range of possible dependence structures in36

the error process.37

The paper is organized as follows. Definitions and fundamental lemmas are discussed in Section 2. A residual process38

defined in Section 3, and its asymptotic distribution is derived under the null hypothesis. This provides the basis for defining39

suitable test procedures. As an example, a simple Bonferroni corrected test is proposed. An improved test together with a40

bootstrap procedure are discussed in Section 4. Simulations illustrate the results in Section 5. Final remarks in Section 641

conclude the paper. Proofs are given in the Appendix.42

2. Definitions and auxiliary results43

2.1. Estimation of µ and C44

First we define the basic model for one sample. Observations are assumed to consist of n independent time series45

Yi· = (Yi1, . . . , YiN) (i = 1, . . . , n) defined by46

Yij = Xi(tj) + ϵi(j) (tj = jN−1, j = 1, . . . ,N) (3)47

with tj = j/N denoting rescaled time. The random curves Xi have the expansion48

Xi(t) = µ(t) +

∞
l=1

ξilφl(t), (4)49
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