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a b s t r a c t

This article proposes testing the hypothesis of a uniformly non-positive nonparametric
regression function using a test statistic with tabulated critical values. The null hypothesis
is characterized in terms of the significance of a parameter, which measures a distance
from the double-integrated regression function to the class of concave functions. The test
statistic is a suitably scaled parameter estimate, which does not require smooth estimation
of the underlying regression and/or the conditional variance functions. The finite sample
performance of the proposed test is studied by means of two Monte Carlo experiments,
showing that the proposed method compares favorably to existing procedures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and summary

Let (Y , X) be a bivariate random vector defined on (Ω, A, P). Assume Y is integrable so that the regression function
m(X) := E (Y | X) is well defined almost surely (a.s.). This article proposes testing the hypothesis

H0 : m(X) ≤ 0 a.s., (1)

in the direction of non-parametric alternatives H1, which consists of all cases where H0 is not satisfied.
Inequality restrictions such as (1) appear naturally when testing treatment effects controlling for covariates. Let D be an

indicator of participation in a treatment program, i.e. D = 1 if the individual participates in the program and 0 otherwise.
Denote the observed outcomeby Z = Z(1)D+Z(0)(1−D), where Z(1) and Z(0) are the potential outcomeswith andwithout
treatment, respectively. The treatment is successful uniformly in the covariate X , e.g. age, if E (Z(0) − Z(1)| X) ≤ 0 a.s.,
which can be expressed as (1) with Y = (E (D| X) − D) Z , provided 0 < E (D| X) < 1 a.s. and the treatment is randomized
conditional on covariates, i.e. Z(1) and Z(0) are independent of D, conditional on X . See Delgado and Escanciano (2013)
and Chang et al. (2015) for further discussion. Identifiability conditions on econometric models often appear as testable
restrictions on moment inequalities. For instance, behavioral choice models generate conditional moment inequalities
suitable to identifying parameters of nonparametric functions of interests; see Pakes (2010). This includes testing the
‘‘realistic expectation hypothesis’’ in insurance market modeling; e.g. Chiappori et al. (2006). Inference on game theoretical
models often assume that some underlying regression function is non-negative; see de Paula (2013) for a survey. Inequality
restrictions on conditionalmodels also arisewhen testing revealed preferences; see e.g. Blundell et al. (2003). Finally, partial
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identification conditions can often be written as conditional moment inequalities. Some references on inference procedures
on moment inequalities are Khan and Tamer (2009), Chernozhukov et al. (2013), Armstrong (2015) and references therein.

Under (1), E

Y · 1{a≤X≤b}


≤ 0 for all a, b ∈ R. This fact has suggested tests of (1) based on local averages. Dümbgen and

Spokoiny (2001) and Juditsky and Nemirovski (2002) proposed a test of qualitative hypotheses on the signal of a Gaussian
white noise model, which include positivity, based on kernel estimators of the regression function. The resulting test is
adaptive in the class of smooth functions considered. Baraud et al. (2003, 2005) proposed a test based on trimmed averages
for qualitative hypotheses on the regression function of a fixed design model with homoskedastic errors. Exact critical
values of these tests are derived under Gaussian errors. Asymptotic tests of positivity in the context of general models
with random covariates and possibly non Gaussian errors have been recently proposed by Kim (2008), Andrews and Shi
(2013), Chetverikov (2013) and Armstrong (2015), among others. The critical values of these tests must be estimated with
the assistance of bootstrap techniques. The test of Lee et al. (2013) is of a different nature. The test statistic is based on
a one-sided version of the Lp-type functionals of kernel estimators using standard normal critical values. The asymptotic
test is justified when the bandwidth converges to zero at a suitable rate related to the sample size and assuming different
restrictions on m. See also Lee et al. (2014). The bootstrap test of Delgado and Escanciano (2013), related to Durot (2003)
and Delgado and Escanciano (2011) monotonicity tests, avoids estimating the regression function. In the general case, the
limiting distribution of their test depends on a nuisance parameter, the integrated conditional variance. This article applies
this testing methodology to construct a test with pivotal critical values, free of nuisance and tuning parameters.

Henceforth, let F denote the cumulative distribution function (cdf) of X , which is assumed to be continuous, and for a
generic monotone function G : R → R, let G−1 denote its generalized inverse G−1(r) := inf{t ∈ R : G(t) ≥ r}, r ∈ R. The
null hypothesis can be equivalently expressed as

H0 : M is non-increasing,

where

M(u) = E

Y · 1{F(X)≤u}


=

 u

0


m ◦ F−1 (v)dv, u ∈ [0, 1]

is the integrated regression function, and ◦ denotes composition of functions. This, in turn, is satisfied if

H0 : M is concave,

where

M(u) :=

 u

0
M(v)dv, u ∈ [0, 1] .

We exploit this fact, expressing H0 as a significance test on a parameter by using the least concave majorant (lcm) operator
L, defined as follows. For any function g : [0, 1] → R, (i) Lg is concave and (ii) if there exists a concave function h
with h ≥ g , then h ≥ Lg . Let ∥·∥ be a norm defined on the space of continuous functions satisfying the Riesz’s property,
i.e. if 0 ≤ g(u) ≤ h(u), for all u ∈ [0, 1], then ∥g∥ ≤ ∥h∥. Examples of possible norms ∥·∥ include the sup-norm
∥g∥∞ := supu∈[0,1] |g(u)| and the L2-norm ∥g∥2

2 :=
 1
0 g2(u)du. The hypotheses can be alternatively expressed in terms

of the parameter η = ∥LM − M∥ ≥ 0, i.e.

H0 : η = 0 vs. H1 : η > 0.

The parameter η measures a distance fromm to the class of non-negative functions.
Given a random sample {(Yi, Xi)}

n
i=1 of independent and identically distributed (i.i.d.) copies of (Y , X), the test statistic is

based on an estimator of η. First, the integrated regression functionM(u) is estimated by,

M̂(u) =
1
n

n
i=1

Yi · 1F̂(Xi)≤u
,

where F̂(·) := n−1n
i=1 1{Xi≤·} is the empirical analog of F . Henceforth, we do not indicate the dependence of the statistics

on the sample size n. This suggests the use of the following estimator of η

η̂ =
LM − M ,

with

M(u) =

 u

0
M̂(v)dv =

1
n

n
i=1

Yi ·


u − F̂(Xi)


1

F̂(Xi)≤u
.

Since η̂ is expected to take small values under H0 and large values under H1, a scaled version of η̂ could be used as a test
statistic. A related testing strategy was suggested by Durot (2003) in order to test that m is monotonic in the context of a
fixed design model with homoskedastic errors. In the general case, asymptotic critical values for tests based on η̂ depend
on the integrated variance τ(u) :=

 u
0


σ 2

◦ F−1

(v)dv, where σ 2(·) := Var (Y | X = ·). Delgado and Escanciano (2013)

suggested a bootstrap test using η̂ as test statistic. In contrast, this article proposes a modification of η̂, so that the resulting
test is asymptotically pivotal. The main contributions of the article are summarized as follows:
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