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a b s t r a c t

We consider N independent stochastic processes (Xi(t), t ∈ [0, Ti]), i = 1, . . . ,N , defined
by a stochastic differential equation with drift term depending on a random variable φi.
The distribution of the random effect φi is a Gaussian mixture distribution, depending on
unknown parameters which are to be estimated from the continuous observation of the
processes Xi. The likelihood of the observation is explicit.When the number of components
is known, we prove the consistency of the exact maximum likelihood estimators and
use the EM algorithm to compute it. When the number of components is unknown, BIC
(Bayesian Information Criterion) is applied to select it. To assign each individual to a class,
we define a classification rule based on estimated posterior probabilities. A simulation
study illustrates our estimation and classification method on various models. A real data
analysis is performed on growth curves with convincing results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The goal of clustering methods is to discover structures among individuals: data are grouped into a few clusters such
that the observations in the same cluster are more similar to each other than those from the other clusters. In this paper we
focus on individuals described by longitudinal data or functional data: data is represented by curves and the randomvariable
underlying data is a stochastic process. Some papers deal with the problem of classification of longitudinal data through
mixed-effects models or models with random effects, assuming that the classes are known (see Arribas-Gil et al., 2015, and
references therein). Their purpose is to build a classification rule of longitudinal curves/profiles into a given number of
different classes to be able to predict the class of a new individual. This is very different from the problem of classification
when the classes and the number of classes are unknown. Here, we adopt the latter point of view. We consider functional
data modeled by a stochastic differential equation (SDE) with random effects. This is a new approach which is very different
from usual functional data analysis methods (see e.g. Jacques and Preda, 2014, for a recent review). The clustering of the
trajectories is then obtained bymodeling the distribution of the random effects as amixture of distributions (with unknown
number of components).

Mixture of linear regression models with random effects is considered in Celeux et al. (2005). Unknown parameters are
estimated bymaximum likelihood, with the EM algorithm and BIC (Bayesian Information Criterion) for selecting the number
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of components. Here, we consider functional data modeled by a stochastic differential equation with drift term depending
on randomeffects and diffusion termwithout randomeffects.More precisely,we considerN real valued stochastic processes
(Xi(t), t ≥ 0), i = 1, . . . ,N , with dynamics ruled by the following SDEs:

d Xi(t) = (φ′

i b(Xi(t)) + a(Xi(t)))dt + σ(Xi(t)) dWi(t), Xi(0) = x, (1)

where (W1, . . . ,WN) areN independentWiener processes,φ1, . . . , φN areN i.i.d.Rd-valued random variables, (φ1, . . . , φN)
and (W1, . . . ,WN) are independent and x is a known real value. The functions σ(.), a(.) : R → R and b(.) : R → Rd are
known. Each process (Xi(t)) represents an individual and the randomvariableφi represents the randomeffect of individual i.

We consider continuous observations (Xi(t), t ∈ [0, T ], i = 1, . . . ,N) with a given T . The estimation of unknown
parameters in the distribution of φi from the (Xi)’s is not straightforward, as the exact likelihood is generally not explicit.
Maximum likelihood estimation in SDEs with random effects has been studied in a few papers (Ditlevsen and De Gaetano,
2005; Donnet and Samson, 2008; Picchini et al., 2010). In Delattre et al. (2013), model (1) is considered with φi having a
Gaussian distribution. This has the advantage of leading to an explicit formula for the exact likelihood.

In this paper, we assume that the random effects φi have distribution given by a mixture of Gaussian distributions, this
mixture distributionmodeling the classes.Wewant to estimate the number of components of themixture, as well as the pa-
rameters and the proportions.More precisely, we assume that the random variablesφ1, . . . , φN have a common distribution
with density g(ϕ, θ) on Rd, which is given by a mixture of Gaussian distributions:

g(ϕ, θ) =

M
ℓ=1

πℓ nd(ϕ, τℓ), nd(ϕ, τℓ)dϕ = Nd(µℓ, Ωℓ), τℓ = (µℓ, Ωℓ)

withM the number of components in the mixture and πℓ the proportions of the mixture (
M

ℓ=1 πℓ = 1), µℓ ∈ Rd and Ωℓ a
d × d invertible covariance matrix. Set θ = ((πℓ, τℓ), ℓ = 1, . . . ,M) for the unknown parameters to be estimated when M
is known. Below, we denote by θ0 the true value of the parameter.

Our aim is to estimate the parameters θ of the density of the random effects from the observations {Xi(t), 0 ≤ t ≤ T , i =

1, . . . ,N}. We prove that the exact likelihood of observations is explicit. This allows to use the EM-algorithm to compute the
maximum likelihood estimator when the number of components is known. We discuss the convergence of the algorithm.
Then BIC is applied for selecting the number ofmixture components. The EM algorithm also enables to define a classification
rule of individuals. As a theoretical result, we prove the consistency of the exact maximum likelihood estimator when the
number M of components is known. Our methods show good results on simulated data, both for the parameter estimation
and the classification rule. An implementation on real data coming from growth chicken curves (Jaffrézic et al., 2006) is
performed.

In Section 2, we introduce notations, assumptions and give the formula of the exact likelihood. In Section 3, the EM
algorithm and its properties are described. We present BIC to select the number of components and the classification rule.
In Section 4, we prove the consistency of the exact maximum likelihood estimator when the number of components is
known. Section 5 is devoted to a simulation study on various models. Section 6 concerns the implementation on real data.
Some concluding remarks are given in Section 7. Theoretical proofs are gathered in the Appendix.

2. Model, assumptions and notations

Consider N real valued stochastic processes (Xi(t), t ≥ 0), i = 1, . . . ,N , with dynamics ruled by (1). The processes
(W1, . . . ,WN) and the r.v.’s φ1, . . . , φN are defined on a common probability space (Ω, F , P). Consider the filtration
(Ft = σ(φi,Wi(s), s ≤ t, i = 1, . . . ,N), t ≥ 0). We introduce the following assumptions:

(H1) The functions x → a(x) and x → b(x) = (b1(x), . . . , bd(x))′ are Lipschitz continuous on R and x → σ(x) is Hölder
continuous with exponent α ∈ [1/2, 1] on R.

Under (H1), for i = 1, . . . ,N , for all ϕ = (ϕ1, . . . , ϕd)
′
∈ Rd, the stochastic differential equation (SDE)

d Xϕ

i (t) = (ϕ′ b(Xϕ

i (t)) + a(Xϕ

i (t)))dt + σ(Xϕ

i (t)) dWi(t), Xϕ

i (0) = x (2)

admits a unique strong solution process (Xϕ

i (t), t ≥ 0) adapted to the filtration (Ft). Moreover, the SDE (1) admits a unique
strong solution adapted to (Ft) such that the joint process (φi, Xi(t)) is strong Markov and the conditional distribution of
(Xi(t)) given φi = ϕ is identical to the distribution of (2). The Markov property of (φi, Xi(t)) is straightforward by looking
at (1) as the two-dimensional SDE:

dφi(t) = 0, φi(0) = φi,

d Xi(t) = (φi(t)′ b(Xi(t)) + a(Xi(t)))dt + σ(Xi(t)) dW (t), Xi(0) = x.

The processes (φi, Xi(t), t ≥ 0), i = 1, . . . ,N are i.i.d. (see e.g. Delattre et al., 2013; Genon-Catalot and Larédo, 2015; Comte
et al., 2013).

To define the likelihood of the observations, let us introduce the associated canonical model. Let CT denote the space of
real continuous functions (x(t), t ∈ [0, T ]) defined on [0, T ], endowed with the σ -field CT associated with the topology
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