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a b s t r a c t

The purpose of this article is to provide an adaptive estimator of the baseline function in
the Coxmodel with high-dimensional covariates. We consider a two-step procedure : first,
we estimate the regression parameter of the Cox model via a Lasso procedure based on
the partial log-likelihood, secondly, we plug this Lasso estimator into a least-squares type
criterion and then perform a model selection procedure to obtain an adaptive penalized
contrast estimator of the baseline function.

Using non-asymptotic estimation results stated for the Lasso estimator of the regression
parameter, we establish a non-asymptotic oracle inequality for this penalized contrast
estimator of the baseline function, which highlights the discrepancy of the rate of
convergence when the dimension of the covariates increases.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following Cox model, introduced by Cox (1972) and defined, for a vector of covariates Z = (Z1, . . . , Zp)T ,
by

λ0(t, Z) = α0(t) exp(βT
0Z), (1)

where λ0 denotes the hazard rate, β0 = (β01 , . . . , β0p)
T

∈ Rp is the regression parameter and α0 is the baseline hazard
function. The Cox partial log-likelihood, introduced by Cox (1972), allows to estimate β0 without the knowledge of α0,
considered as a functional nuisance parameter. For the estimation of α0, one common way is to use a two step procedure,
starting with the estimation of β0 alone and then to plug this estimator into a non parametric type estimator α0, usually a
kernel type estimator.
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Let us be more specific.
When p is small compared to n, β0 is usually estimated by minimization of the opposite of the Cox partial log-likelihood.

We refer to Andersen et al. (1993), as a reference book, for the proofs of the consistency and the asymptotic normality
of β̂ when p is small compared to n. Those strategies only apply when p < n and even more, they only apply when p is
small compared to n. When p grows up, becoming of the same order as n and possibly larger than n, various well known
problems appear. Among them, theminimization of the opposite of the Cox partial log-likelihood becomes difficult and even
impossible if p > n.

In high-dimension, when p is large compared to n, the Lasso procedure is one of the classical considered strategies.
The Lasso (Least Absolute Shrinkage and Selection Operator) has been first introduced by Tibshirani (1996) in the linear
regression model. It has been largely considered in additive regression model (see for instance Knight and Fu, 2000, Efron
et al., 2004, Donoho et al., 2006,Meinshausen andBühlmann, 2006, Zhao andYu, 2006, Zhang andHuang, 2008,Meinshausen
and Yu, 2009 and also Juditsky and Nemirovski, 2000, Nemirovski, 2000, Bunea et al., 2006, 2007c,a, Greenshtein and Ritov,
2004 or Bickel et al., 2009), and in density estimation (see Bunea et al., 2007b and Bertin et al., 2011). In the particular
case of the semi-parametric Coxmodel, Tibshirani (1997) has proposed a Lasso procedure for the regression parameter. The
Lasso estimator of the regression parameter β̂ is defined as the minimizer of the opposite of the Cox partial log-likelihood
under an ℓ1 type constraint, that is, suitably penalized with an ℓ1-penalty function. Recent results exist on the estimation
of β0 in high-dimension setting. Among them one can mention (Bradic et al., 2012) who have proved asymptotic results
for Lasso estimator. More recently, Bradic and Song (2012), Kong and Nan (2012) and Huang et al. (2013) establish the first
non-asymptotic oracle inequalities (estimation and prediction bounds) for the Lasso estimator.

For the baseline hazard function and when p is small compared to n, the common estimator is a kernel estimator, which
depends on β̂ obtained by minimization of the opposite of the Cox partial log-likelihood. This kernel estimator has been
introduced by Ramlau-Hansen (1983a,b) from the Breslow estimator of the cumulative baseline function (see Ramlau-
Hansen, 1983b and Andersen et al., 1993 for more details). In this context, Ramlau-Hansen (1983b) and Grégoire (1993)
proved asymptotic results. No non-asymptotic results and no adaptive results have to date been established for the kernel
estimator of the baseline function. Finally, when p is large compared to n, to our knowledge, the construction of an estimator
of the baseline function has not been yet considered.

In this paper, we consider a two-step procedure to estimate β0 and α0, the two parameters in the Cox model. But our
contributions focus more on the estimation of α0. In the Cox model we consider, it is noteworthy that the high-dimension
only concerns the regression parameter, whereas the baseline function is a time function. Its estimation would not require
a procedure specific to high-dimension, besides the first step concerning the estimation of β0. We propose a procedure
for the construction of an estimator of the baseline hazard function α0, p being either smaller than n or greater than n. It
combines a Lasso procedure for β0 as a first step and a second step based on a model selection strategy for the estimation
of the baseline function α0. This model selection procedure takes its origins in the works of Akaike (1973) and Mallows
(1973), more recently formalized by Birgé and Massart (1997) and Barron et al. (1999) for the estimation of densities and
regression functions (see the book of Massart, 2007 as a reference work on model selection). In survival analysis, the model
selection has also been documented. Letué (2000) has adapted these methods to estimate the regression function of the
non-parametric Cox model, when p < n. More recently, Brunel and Comte (2005), Brunel et al. (2009) and Brunel et al.
(2010) have obtained adaptive estimation of densities in a censoring setting. Model selection methods have also been used
to estimate the intensity function of a counting process in the multiplicative Aalen intensity model (see Reynaud-Bouret,
2006 and Comte et al., 2011). However, the model selection procedure has never been considered, to our knowledge, for
estimating the baseline hazard function in the Cox model.

Our contributions are at least threefold: Our procedure is the first that focus on the estimation of baseline function of
the semi-parametric Cox model with high-dimensional covariates. This procedure provides an adaptive estimator of the
baseline function that works as well for small p and large p compared to n (that is for possibly high-dimensional covariates).
Furthermore, for this estimator, we state non-asymptotic oracle inequalities, that hold, once again, p being either smaller
than n or greater than n. More precisely, we prove that the risk of this estimator achieves the best risk among estimators
in a large collection. For each model, the risk of an estimator is bounded by the sum of three terms. The first term is a bias
term involving to the approximation properties of the collection of models, through the distance evaluated in β0 between
the true baseline and the orthogonal projection of α0 on the best selected model. The second term is a penalty term of the
same order than the variance on onemodel, that is of order the dimension of onemodel over n, as expected with ℓ0-penalty.
These two terms are the ‘‘usual’’ terms appearing in nonparametric estimation. It is noteworthy that these two terms do not
involve any quantity related to the risk of the Lasso estimator of β0. The last term precisely comes from the properties of
the Lasso estimator of β0. This last term is of order log(np)/n, as expected for a Lasso estimator.

When p is small, the third last term is of order log(n)/n and, the rate is governed by the first two terms. In that case, the
penalty term being of the same order than the variance over one model, we conclude that the model selection procedure
achieves the ‘‘expected rate’’ of order n−2γ /(2γ+1) when the baseline function belongs to a Besov space with smoothness
parameter γ . This continues to hold when p is of the same order than the sample size n. When p is larger than n, that is in
the so-called ultra-high dimension (see Verzelen, 2012), the rate for estimating α0 is changed, and more precisely degraded
as a price to pay for being with high dimension covariates. This degradation follows accordingly to the order of p compared
to n.
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