Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/jspi)

Journal of Statistical Planning and Inference

journal homepage: www.elsevier.com/locate/jspi

Short communication

On the time for Brownian motion to visit every point on a circle

Philip Ernst^{*}, Larry Shepp^{[1](#page-0-1)}

Department of Statistics, Rice University, Houston, TX 77005, USA

a r t i c l e i n f o

Article history: Received 15 June 2015 Received in revised form 20 October 2015 Accepted 21 October 2015 Available online 30 October 2015

MSC: primary 60J65 secondary 60G15

Keywords: Range of Wiener process Continuous recurrence First hitting time

1. Introduction

a b s t r a c t

Consider a Wiener process *W* on a circle of circumference *L*. We prove the rather surprising result that the Laplace transform of the distribution of the first time, θ*^L* , when the Wiener process has visited every point of the circle can be solved in closed form using a continuous recurrence approach.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license [\(http://creativecommons.org/licenses/by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/).

Consider a Wiener process on a circle of circumference *L*. The distribution of the first time, θ*^L* , when the Wiener process has visited every point of the circle is equivalent, via the natural bijection between and interval of the form $[b, b + L)$ on the real line and a circle of circumference *L*, to the distribution of the first time when the range of the Wiener process on the real line is of length *L*. This distribution is well-known and it has the following Laplace transform: [see, for example, [\(Borodin](#page--1-0) [and](#page--1-0) [Salminen,](#page--1-0) [2002\)](#page--1-0), p. 242]

$$
\mathbb{E}\left[e^{-s\theta_L}\right] = \frac{1}{\cosh^2\left(L\sqrt{\frac{s}{2}}\right)}, \quad s \ge 0. \tag{1}
$$

[Feller](#page--1-1) [\(1951\)](#page--1-1), in writing about the range of a Wiener process, did so using explicit probability density calculations. [Imhof](#page--1-2) [\(1986\)](#page--1-2) discovered Laplace transform for the first time, θ*^L* , when the Wiener process has visited every point of the circle, again via explicit probability density calculations. Further computations employing the Laplace transform for θ*^L* were presented in [Vallois](#page--1-3) [\(1993\)](#page--1-3). However, in departure from these previous works, we prove the result in Eq. [\(1\)](#page-0-2) using a continuous recurrence setup. We do so by calculating the left hand side in terms of random variables representing how long it takes to cover a range of length *L*, *given that one is already at an endpoint of a range of length a* (which counts as being covered already). This is the idea behind the definition of $\theta_{a,L}$, which is defined in Section [2.](#page-1-0)

Corresponding author.

<http://dx.doi.org/10.1016/j.jspi.2015.10.010>

$$
\left(1\right)
$$

E-mail address: philip.ernst@rice.edu (P. Ernst).

¹ Deceased April 23, 2013.

^{0378-3758/}© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license [\(http://creativecommons.org/](http://creativecommons.org/licenses/by-nc-nd/4.0/) [licenses/by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/).

Key to our recurrence will be the concept of a *switchback*. Imagine we pick some $a \in \mathbb{R}^+$ that is less than *L*. Consider the maximum, *Ma*, of *W* until the first visit to the point, −*a* on the negative half-axis. (Here, *M^a* > 0; otherwise, the process would have moved directly from 0 to −*a*, which occurs w.p. 0) We call the time of this first visit τ[−]*a*. We say that a ''*switchback*'' occurs when *W* hits −*a* before the length of the range, *a* + *Ma*, is *L*. Formally, let ¹*a*,*^L* be the indicator random variable for the event of a switchback, defined as follows:

$$
1_{a,L} = \begin{cases} 1 & \text{if } \inf\{t : 0 \le t < \infty \mid W_t = -a\} \le \inf\{t : 0 \le t < \infty \mid W_t = L - a\} \\ 0 & \text{otherwise.} \end{cases}
$$

After a switchback, the process continues from $-a$ with a starting range of $M_a + a$ (i.e., the interval $[-a, M_a]$ has been covered). By translation and reflection invariance, as well as the symmetry of Brownian motion, we may just as well assume that we are at the point 0 and have covered the interval $[-(a + M_a)$, 0]. We then repeat the process and say that a second switchback occurs if we reach −(*a* + *Ma*) before covering a range of length *L*. To summarize:

Step 1: We start our process at the right hand end of [−*a*, 0] and we consider this interval as already being covered. *M^a* is the maximal value attained before the time τ_a that we first hit −*a*. The total range is $a + M_a$. If $M_a \ge L - a$, then we have covered an interval of length *L* before reaching −*a*, and no switchback occurs. If not, a switchback occurs and we continue to Step 2.

Step 2: We have covered a range of length $a+M_a$. Without loss of generality, we consider the interval $[-(a+M_a), 0]$ to have been covered. Let $-(a+M_a) := -a'$, and start the process on the right hand end of $[-a', 0]$. If $M_{a'} \ge L - M_{a'}$, no switchback occurs. Otherwise, another switchback occurs and we continue to Step 3.

Step 3: We have covered a range of length $a' + M_{a'}$. Without loss of generality, we consider the interval $[-(a' + M_{a'})$, 0] to have been covered. Let $-(a' + M_{a'})$ be called $-a''$, and start the process on the right hand end of $[-a'', 0]$. If $M_{a''} \ge L - a''$, a switchback occurs. Otherwise, continue Step 3 recursively until a range of length *L* has been covered.

Steps 1–3 are illustrated in [Fig. 1.](#page--1-4)

In Section [3](#page--1-5) we prove that the recurrence can be solved in closed form. In Section [4](#page--1-6) we prove that the number $v = v_{a,L}$ of switchbacks before covering an interval of length *L* has a Poisson distribution with parameter $\lambda = \log \frac{l}{a}$. Thus, as $a \downarrow 0$, the number of switchbacks goes to infinity at a logarithmic rate.

2. Solving the recurrence

We proceed to solve for the recurrence. First, consider a Wiener process $W(t)$, $t > 0$. For each fixed, $a > 0$. let M_a denote the maximum positive value of $W(t)$ before the first hitting time of $-a$. Assuming that $L - a$ is positive, we have

$$
\mathbb{P}\left(M_a \leq y\right) = \mathbb{P}\left(\tau_{-a} < \tau_y\right) = \frac{y}{a+y},
$$

by the logic of the gambler's ruin.

Let $I(t)$ be the range of the Wiener process up to time *t*. Define $\theta_{a,L}$ to be the random variable representing the time until *I*(*t*) ∪ [−*a*, 0] has length *L*. We proceed by defining

$$
f(s, a, L) := \mathbb{E}\left[\exp\left(-s\theta_{a,L}\right)\right],\tag{2}
$$

where $f(s, a, L)$ is considered a function of *a* with *s* and *L* being held constant. By abuse of notation, we label $f(s, a, L)$ as $f(a)$. Let us define the following functions

$$
F(s, y) = \mathbb{E}\left[\exp\left(-s\tau_{-a}\right)\mathbb{1}_{\tau_{-a} < \tau_{y}}\right] \quad \text{and} \quad G(s, y) = \mathbb{E}\left[\exp\left(-s\tau_{y}\right)\mathbb{1}_{\tau_{y} < \tau_{-a}}\right]. \tag{3}
$$

We now employ the well-known fact (see [Borodin](#page--1-0) [and](#page--1-0) [Salminen,](#page--1-0) [2002,](#page--1-0) amongst other sources), that for any *c*,

$$
\exp\left(cW(t) - \frac{c^2}{2}t\right) \quad t \ge 0\tag{4}
$$

is a martingale. If $s = \frac{c^2}{2}$ $\frac{2}{2}$, we easily obtain the following standard and well known forms of $F(s, y)$ and $G(s, y)$ (see [Borodin](#page--1-0) [and](#page--1-0) [Salminen,](#page--1-0) [2002,](#page--1-0) amongst other sources),

$$
F(s, y) = \frac{\sinh cy}{\sinh (c(a+y))} \quad \text{and} \quad G(s, y) = \frac{\sinh ca}{\sinh (c(a+y))}.
$$
 (5)

Continuing from above, our goal is to write a recurrence for $f(a)$ in terms of $f(a + y)$ for $0 < y \leq L - a$. To do so, we define *f*(*a*) using indicator functions. With the process starting at 0, let the first indicator function represent the case of a switchback, in which −*a* is hit before the length of the range is *L*. Let the second indicator function denote the case of no switchback. We may then write

$$
f(a) = \underbrace{\mathbb{E}\left[\exp\left(-s\theta_{a,L}\right)\mathbb{1}_{\tau_{-a} < \tau_{L-a}}\right]}_{\text{switchback}} + \underbrace{\mathbb{E}\left[\exp\left(-s\theta_{a,L}\right)\mathbb{1}_{\tau_{L-a} < \tau_{-a}}\right]}_{\text{no switchback}}.
$$
\n
$$
(6)
$$

Download English Version:

<https://daneshyari.com/en/article/7547489>

Download Persian Version:

<https://daneshyari.com/article/7547489>

[Daneshyari.com](https://daneshyari.com)