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a b s t r a c t

This paper investigates the prediction problem in the general Gaussian linear model
with correlated noise, under the assumption that the covariance matrix is known, and
focuses particularly on the high dimensional setting.We adapt an overly greedy procedure,
where the relevant covariates are selected initially in one pass on the data, without any
iteration, nor optimization. A simple componentwise regression, followed by an adaptive
thresholding, locates leaders among the regressors to reduce the initial dimensionality.
A second adaptive thresholding is performed on the linear regression upon the leaders.
These steps take into account the correlated structure of the noise, by using weights
associated to the covariates in a modified norm induced by the covariance matrix of the
noise. The consistency of the procedure is investigated, and rates are provided for a wide
range of sparsity classes, with little restriction on the number of regressors. An extensive
computational experiment is conducted to emphasize the fact that the good theoretical
results are corroborated by quite good practical performances in the presence of correlated
noise.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following linear model

Z = Ψα + η,

where we observe the n-dimensional vector Z , and the n×p designmatrixΨ . The p-dimensional vector α is the signal to be
estimated, while the n-dimensional vector η is an unobservable noise. The case where the number of regressors p is large
compared to the number n of observations is the focus of a lot of attention in contemporary statistics. Indeed, such models
havemany practical applications ranging fromgenomics, where the number of possibly involved genes in a pathology can be
huge compared to the little number of affected people, to image analysis, where the number of unknown pixels can be very
large compared to the number of measurements. Natural language processing is another important field of applications:
document-term matrices, where each line represents a text from a given corpus and each column a word belonging to one
of the texts, leading necessarily to very high dimensional models.

The problem of estimating α in such a high dimensional setting is impossible to solve in full generality. But it can
become feasible if some measure of the intrinsic dimension of the signal is in fact much smaller than the dimension of
the ambient space Rp. This is referred to as the sparsity of the signal. Many computationally reasonable and theoretically
efficient algorithms have been proposed in the literature, using greedy methods (Mallat and Zhang, 1993; Tropp, 2004;
Needell and Vershynin, 2009; Zhang, 2011) or the extraordinary explosive domain of ℓ1 penalties which we can barely
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reference: Tibshirani (1994), Candes and Tao (2007) and van de Geer et al. (2011) being a few of the references on the topic.
For a much more complete bibliography we can refer to Bühlmann and van de Geer (2011).

Besides the sparsity of the signal, other conditions appear to be also necessary to solve the problem, basically to prevent
multi-collinearities for the columns of the matrix Ψ . Most of the results in the papers cited above are obtained under RIP
type-conditions. Recall that the Gram-matrix associated to the subsetC of {1, . . . , p} is defined by G(C) = n−1 Ψ t

CΨC where
ΨC is the restriction of thematrixΨ to the columnswith indices inC. Roughly speaking the Restricted Identity Property (RIP)
means that G(C) is almost the identity matrix as soon as the cardinality m = |C| is small enough. However this condition
can seem quite drastic if the problem is only to avoid too many multi-colinearities. Indeed, one could imagine for instance,
replacing ‘G(C) is almost the identity matrix’ by the more flexible condition: G(C) is an invertible matrix. And one might
wonder how the results would be affected by such a less restrictive condition. The answer to this question is quite unclear,
and one goal of this paper is to shed some light on this aspect.

The problem appears in quite a clear way for instance in models derived from inverse problems where the eigenvalues
of the matrices G(C) can depend in a crucial way on the set C. An example of such a case occurs when Ψ is in fact the
multiplication of a n× n symmetric definite positive matrix K by a n× pmatrix X obeying RIP conditions. In practice this is
corresponding to a compressed sensing situation where the responses are not only perturbed by noise but are also blurred
by the filter K .

This paper will focus on the equivalent problem of the heteroscedastic setting, where instead of assuming that the noise
components are independent identically distributed random variables, we suppose that the vector η has a covariancematrix
Γ . In such a situation, the usual ‘‘low-dimensional’’ (pλ2n) intuition would be to ‘‘pre-whiten’’ the noise by multiplying Z
andΨ by Γ −1/2, in order to consider a homoscedastic model. But doing so will modify the correlation among the covariates
and may lead to very poorly conditioned design matrix. For example, even if the initial design Ψ verifies the RIP, there is a
no reason to believe that Γ −1/2Ψ will still do so, and that we will not make estimation much worse by starting with this
‘‘whitening’’ operation. Our greedy procedure wants to avoid such a transformation, starting from awell conditioned design
Ψ (with low coherence), wemodify a greedy procedure to take into account the covariance Γ without risking to deteriorate
the conditioning of Ψ .

Although most of the works cited above have been investigating the homoscedastic setting, several works have been
conducted in this directionwhere the noise has a non trivial covariance, studying the behavior of the classical lasso estimator
(Tibshirani, 1994), or the adaptive lasso estimator (Zou, 2006) in this correlated setting, avoiding to ‘‘pre-whiten’’ the
noise. In Dette and Wagener (2013) and Wagener and Dette (2013) it is proved that the adaptive lasso is consistent and
asymptotically normal in a heteroscedastic setting with p fixed and n growing, but with suboptimal variance. A correction
is proposed with a weighted adaptive lasso estimator which has optimal asymptotic variance. In Wagener and Dette (2012)
this analysis is extended to the more general bridge estimators. A modification of Lasso and Pseudo-Lasso in the context of
linear instrumental variables models able to handle the heteroscedastic setting even with unknown covariance is proposed
in Belloni et al. (2012), where sharp convergence rates are proved under the hypothesis that log p = o(n1/3). In Jia et al.
(2010) it is shown that the lasso is sign consistent in a Poisson-like model when the signal to noise ratio is large enough.
Furthermore the trade off implied by the ‘‘pre-whitening’’ operation has already been investigated in the context of Lasso
pre-conditioning, for example in Wauthier et al. (2013), Jia and Rohe (2012), Qian and Jia (2012), Rohe (2015), or Rauhut
and Ward (2011).

Wewill adapt to the heteroscedastic setting an overly greedy procedure studied in thewhite noise setting in the series of
papers (Kerkyacharian et al., 2009; Mougeot et al., 2012, 2013, 2014). The LOL algorithm is an Orthogonal One-Step Greedy
(OOSG) procedure, which extends the classical thresholding theory to high-dimensional linear models (even if it is not
necessary, the algorithm is still usable for classical low dimensional models, where the number of observations is larger
than the number of covariates). One-Step Greedy procedures are typical selection/estimation procedures in the sense of
Foster and George (1994): in a first step they select a number N of covariates by independent screening (Fan and Lv, 2008),
then perform least squares regression on those covariates, the resulting estimator being finally thresholded. The number N
and the threshold are data driven, giving an adaptive procedure. This procedure can behave in the high dimensional setting
almost as well as much more sophisticated procedures involving optimization steps. The strength of this kind of method
is its extreme simplicity (and numerical efficiency). As a drawback, they rely for instance on coherence conditions instead
of RIP assumptions. In the context of heteroscedasticity we will see that precisely the simplicity of these types of condition
becomes helpful to disentangle with the parts linked to the covariance.

To adapt such a procedure to the covariance structure of the errors, we will modify the OOSG methodology by
incorporating in the thresholdsweights related to the size of the columns of the design in the norm induced by the covariance
matrix of the noise. This simple modification allows us to obtain convergence rates (in Section 4) on weighted ℓq balls
driven by the standard behavior of an inverse problem term involving additionally the coherence and the sparsity of the
signal, together with a term taking into account the location of the signal among the regressors. Indeed, a basic effect of the
presence of a non standard covariance is to bring disparity between the potential precisions of estimation of each coordinate
of the signal.

To obtain such results we need to modify the concentration inequality on the norm of the orthogonal projection of the
noise to take into account not only the dimension of the subspace generated by the selected covariates, but its position too
(see Proposition 3). Since we work under assumptions which allow the selection procedure to behave well, this leads to
rates driven by the location among the covariates of the support of the signal of interest α.



Download	English	Version:

https://daneshyari.com/en/article/7547498

Download	Persian	Version:

https://daneshyari.com/article/7547498

Daneshyari.com

https://daneshyari.com/en/article/7547498
https://daneshyari.com/article/7547498
https://daneshyari.com/

