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a b s t r a c t

The response of a patient in a clinical trial usually depends on both the selected treatment
and some latent covariates, while its variance varies across the treatment groups. A general
heteroscedastic linear additive model incorporating the treatment effect and the covariate
effects is often used in such studies. In this paper, under D- and DA-optimality criteria,
it is shown that the product of an optimal treatment allocation and an optimal design
for covariates is also optimal among all possible designs for this linear additive model.
Moreover, the optimal treatment allocation is characterized by a unique set of solutions to
a system of equations. The connection between D- and DA-optimal designs is also revealed.
Several examples are presented to illustrate the applications of the above results to some
selected models.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consider a K -treatment (K ≥ 2) experiment consisting of a set of independent runs, where in each run one treatment
is assigned. Suppose the mean value of the response of each run is determined by the effect of the chosen treatment
t ∈ T = {1, . . . , K} and also by the effects of m covariates z = (z1, . . . , zm)T ∈ Z, where Z is a compact subset of
Rm. The variance of the response varies across the treatment groups and depends only on t . Let f (z) = (f1(z), . . . , fJ(z))T
denote a vector of J regression functions defined on Z satisfying {1, f1(z), . . . , fJ(z)} is a linearly independent set. Then the
heteroscedastic linear additive model is

y(t, z) = αt +

J
j=1

γjfj(z) + σtε, (1)

where α = (α1, . . . , αK )T and γ = (γ1, . . . , γJ)
T are the vectors of treatment effects and covariate effects, respectively. The

unequal variances σ 2
1 , . . . , σ 2

K are assumed to be known and positive, and ε’s are independent random variables, each with
mean 0 and unit variance.

For simplicity, rewrite model (1) as y(t, z) = βTg(x) + σtε, where x = (t, z) ∈ X, X = T × Z, g(t, z) = (eTK ,t , f
T (z))T

and β = (αT , γT )T . Here eK ,t is the vector of length K with its tth entry equal to one and all other entries equal to zero.
Throughout all designs will be treated as approximate designs, i.e., probability measures on the design region with finite
support points. A centre problem is to find optimal designs for model (1) under some optimality criterion. When there is
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no covariate effects in model (1), Wong and Zhu (2008) and Sverdlov and Rosenberger (2013) obtained optimal treatment
allocation designs for different inferential purposes. Recently, Atkinson (2015) studied D- and DA-optimal designs for model
(1) with K = 2, J = m, fj(z) = zj and Z = [−1, 1]m, i.e., only the treatment effects and all the linear main effects of m
continuous covariates are considered.

The aim of this paper is to generalize the work of Atkinson (2015), by providing a theoretical insight into the design
optimality for the general model (1) with multiple treatments. We note that model (1) can be regarded as a multi-factor
model, for which optimal designs are usually obtained by the method of product design. See Schwabe (1996), Rodríguez
and Ortiz (2005) and Graßhoff et al. (2007) for examples. Wewill show certain product design is D- or DA-optimal for model
(1) and present a further investigation of the optimal treatment allocation rules.

The remainder of this paper will unfold as follows. Section 2 proves that the product of an optimal treatment allocation
and an optimal design for covariates is D-optimal for model (1). The characterization for the optimal treatment allocation of
anyD-optimal design is established, some numerical results are also presented.When the goal is to estimate some treatment
contrasts and certain covariate effects, parallel results are obtained with respect to DA-optimality in Section 3. Moreover,
the connection between the two optimal treatment allocations under D- and DA-optimality criteria is built. Applications of
the theories to selected models are given in Section 4. Section 5 concludes this paper with some remarks.

2. D-optimal designs for model (1)

For model (1), the information matrix of a given design ξ on X is

M(ξ) =


X

g(x)gT (x)/σ 2
t dξ . (2)

DefineΞ = {ξ | detM(ξ) > 0}, i.e., the set of all designs onXwith non-singular informationmatrix. Typically we are going
to find optimal designs overΞ whichmaximize some concavity criterion function of the informationmatrix, see Pukelsheim
(2006) and Atkinson et al. (2007) for examples. A design is said to be D-optimal for model (1) if it maximizes detM(ξ) over
Ξ . Any D-optimal design minimizes the volume of the confidence ellipsoid for β, the vector of total unknown parameters
in model (1).

The D-optimal designs found by Atkinson (2015) are essentially special product designs (see Example 2 in Section 4). In
this section a further characterization of D-optimal designs for the more general linear model (1) with multiple treatments
will be presented by using the techniques in the theory of optimal product designs.

Firstly, in addition to the full model (1) we consider two reduced marginal models: the heteroscedastic one-way layout
for treatment effects

y1(t) = αt + σtε, (3)

and the homoscedastic marginal model for covariate effects with an explicit intercept term

y2(z) = γ0 +

J
j=1

γjfj(z) + ε. (4)

Let ξ1 and ξ2 be designs onT andZ, respectively, i.e., ξ1 is a treatment allocation design and ξ2 is a design for covariates. Since
a treatment allocation design always provides K nonnegative weights w1, . . . , wK for the K treatments with

K
k=1 wk = 1,

ξ1 can be equivalently described by a K × 1 vector of weights w = (w1, . . . , wK )T . For the two marginal models, the
corresponding information matrices of ξ1 and ξ2 are

M1(ξ1) = diag

w1σ

−2
1 , . . . , wKσ−2

K


and

M2(ξ2) =

 1


Z

f T (z) dξ2
Z

f (z) dξ2


Z

f (z)f T (z) dξ2

 ,

respectively.
Given ξ1 on T and ξ2 on Z, the product design is defined as the product measure ξ1 ⊗ ξ2 on X = T × Z. Hence ξ1 ⊗ ξ2

assigns the weight ξ1(t)ξ2(z) to every point (t, z) in the Cartesian product of the supports of ξ1 and ξ2. The information
matrix (2) of ξ1 ⊗ ξ2 for model (1) can be rewritten as

M(ξ1 ⊗ ξ2) =


M11(ξ1 ⊗ ξ2) M12(ξ1 ⊗ ξ2)

MT
12(ξ1 ⊗ ξ2) M22(ξ1 ⊗ ξ2)


, (5)
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